scispace - formally typeset
Search or ask a question

Showing papers by "Filippo Cardano published in 2015"


Journal ArticleDOI
TL;DR: A short overview of the emerging photonic applications that rely on spin-orbit optical phenomena can be found in this paper, where the photon spin interaction with the light wave propagation and spatial distribution is discussed.
Abstract: Spin–orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

243 citations


Journal ArticleDOI
TL;DR: In this paper, a photonic implementation of the quantum walk in the orbital angular momentum space of light is presented, where the whole process develops in a single light beam, with no need of interferometers, and it requires optical resources scaling linearly with the number of steps.
Abstract: The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

168 citations


01 Jan 2015
TL;DR: This work reports the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons, and introduces a novel versatile photonic platform for quantum simulations.
Abstract: A discrete quantum walk occurs in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. The “quantum walk” has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

93 citations