scispace - formally typeset
Search or ask a question

Showing papers by "Fred Davey published in 2006"


Journal ArticleDOI
TL;DR: In this article, lower crustal and lithospheric flow is proposed as the cause of the inferred thick crust underlying southern Adare Basin, and a result of the constraining of extension to the adjacent contiguous Northern Basin.
Abstract: Spreading in the Adare Basin off north-western Ross Sea (43–26 Ma) and extension in the Victoria Land Basin (VLB, > 36 Ma) are used to constrain the pole of rotation for the Adare Basin, providing a rifting model for the region for the past 45 Ma. The offset from Northern Basin to VLB at about 74°S coincides with the linear Polar-3 magnetic anomaly, inferred to be caused by a major 48 - 34 Ma igneous intrusion. The style of extension apparently changed at about 34 Ma, with the end of intrusion at the Polar-3 anomaly, a change from highly asymmetric extension in Adare Basin, and the onset of major subsidence on the flanks of VLB. Ductile lower crustal and lithospheric flow is proposed as the cause of the inferred thick crust underlying southern Adare Basin, and a result of the constraining of extension to the adjacent contiguous Northern Basin.

50 citations


Journal ArticleDOI
TL;DR: In this paper, a simple 3D gravity model is derived that includes detailed crustal structures from the South Island GeopHysical Transect (SIGHT) experiment as well as a high-density anomaly in the mantle inferred from teleseismic data.
Abstract: SUMMARY Isostatic considerations exhibit differences between the northern, central and southern parts of the Pacific‐Australian plate collision in South Island, New Zealand. In the northern part mean elevations are moderate and the gravity low is small; the central part contains the highest elevations, and gravity and elevations correspond to each other relatively well; and in the southern part the gravity low is strongest whereas the mean elevations are moderate again. These differences indicate changes in the character of the isostatic compensation and are explained by increased thickening and widening of the crustal root from north to south, and also by the long wavelength gravity response to a mantle density anomaly that increases towards the south. A simple 3-D gravity model is derived that includes the detailed crustal structures from the South Island GeopHysical Transect (SIGHT) experiment as well as a high-density anomaly in the mantle inferred from teleseismic data. The model indicates that cold and, therefore, dense upper mantle material penetrates the asthenosphere to a greater extent in the south, similar to the behaviour of an apparently highly ductile lower crust. As plate reconstruction suggests more lithospheric shortening in the north, our model corresponds to lithospheric material escaping laterally to the south, almost perpendicular to the compression caused by lithospheric shortening of the mantle. Therefore, in addition to the prevailing mantle shear in New Zealand, there may also be a component of extrusional mantle creep beneath the Southern Alps orogen, which could have caused some of the observed large seismic anisotropy in this region. We may have also found evidence for submerged Eocene‐Miocene oceanic lithosphere beneath the southeastern part of South Island that has been unaccounted for after plate reconstruction.

16 citations