scispace - formally typeset
Search or ask a question

Showing papers by "Gerd Binnig published in 2011"


Journal ArticleDOI
TL;DR: It is feasible to perform volumetric analysis efficiently with high accuracy and low variability, even in patients with late-stage cancer who have complex lesions, and the use of volumes clearly shows enhanced sensitivity with respect to determining response to therapy.
Abstract: Background. This study presents a semiautomated approach for volumetric analysis of lung tumors and evaluates the feasibility of using volumes as an alternative to line lengths as a basis for response evaluation criteria in solid tumors (RECIST). The overall goal for the implementation was to accurately, precisely, and efficiently enable the analyses of lesions in the lung under the guidance of an operator. Methods. An anthropomorphic phantom with embedded model masses and 71 time points in 10 clinical cases with advanced lung cancer was analyzed using a semi-automated workflow. The implementation was done using the Cognition Network Technology. Results. Analysis of the phantom showed an average accuracy of 97%. The analyses of the clinical cases showed both intra- and interreader variabilities of approximately 5% on average with an upper 95% confidence interval of 14% and 19%, respectively. Compared to line lengths, the use of volumes clearly shows enhanced sensitivity with respect to determining response to therapy. Conclusions. It is feasible to perform volumetric analysis efficiently with high accuracy and low variability, even in patients with late-stage cancer who have complex lesions.

23 citations


Journal ArticleDOI
01 Jan 2011
TL;DR: Cognition Network Technology was extended to process table data, making it possible to access and relate records from different images and non-image sources, such as demographic patient data or parameters from clinical examinations, and illustrates a path to a new generation of future CAD systems.
Abstract: We present a new approach for computer-aided detection and diagnosis in mammography based on Cognition Network Technology (CNT). Originally designed for image processing, CNT has been extended to also perform context- and knowledge-driven analysis of tabular data. For the first time using this technology, an application was created and evaluated for fully automatic searching of patient cases from a reference database of verified findings. The application aims to support radiologists in providing cases of similarity and relevance to a given query case. It adopts an extensible and knowledge-driven concept as a similarity measure. As a preprocessing step, all input images from more than 400 patients were fully automatically segmented and the resulting objects classified—this includes the complete breast shape, the position of the mammilla, the pectoral muscle, and various potential candidate objects for suspicious mass lesions. For the similarity search, collections of object properties and metadata from many patients were combined into a single table analysis project. Extended CNT allows for a convenient implementation of knowledge-based structures, for example, by meaningfully linking detected objects in different breast views that might represent identical lesions. Objects from alternative segmentation methods are also be considered, so as to collectively become a sufficient set of base-objects for identifying suspicious mass lesions. For 80% of 112 patient cases with suspicious lesions, the system correctly identified at least one corresponding mass lesion as an object of interest. In this database, consisting of 1,024 images from a total of 303 patients, an average of 0.66 false-positive objects per image were detected. An additional testing database contained 480 images from 120 patients, 15 of whom were annotated with suspicious mass lesions. Here, 47% (7 out of 15) of these were detected automatically with 1.13 false-positive objects per image. A diagnosis is predicted for each patient case by applying a majority vote from the reference findings of the ten most similar cases. Two separate evaluation scenarios suggest a fraction of correct predictions of respectively 79 and 76%. Cognition Network Technology was extended to process table data, making it possible to access and relate records from different images and non-image sources, such as demographic patient data or parameters from clinical examinations. A prototypal application enables efficient searching of a patient and image database for similar patient cases. Using concepts of knowledge-driven configuration and flexible extension, the application illustrates a path to a new generation of future CAD systems.

12 citations


Book ChapterDOI
01 Jan 2011
TL;DR: A method is presented for the fully automated segmentation, classification and quantification of individual cell morphology in phase-contrast images and the degree of toxic damage to each individual cell following phenol incubation.
Abstract: Because of the very special type of contrast in phase-contrast images, it is almost impossible to perform fully automated single-cell analysis and quantification successfully. Because fluorescent dyes are highly toxic, phase-contrast images are commonly used to monitor live cells. In this paper, we present a method for the fully automated segmentation, classification and quantification of individual cell morphology in phase-contrast images. We calculate the confluence of the cell population and quantify the degree of toxic damage to each individual cell following phenol incubation. The results are then compared to standard cytotoxicity assays.

2 citations