scispace - formally typeset
Search or ask a question

Showing papers by "Gerry Gilmore published in 2010"


Journal ArticleDOI
TL;DR: In this article, the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey is reported, and they use deep follow-up imaging obtained with the 4m Mayall telescope at Kitt Peak National Observatory to derive their structural parameters.
Abstract: We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15 degrees away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is twenty times smaller at only 3pc.

217 citations


Journal ArticleDOI
TL;DR: In this article, the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey is reported, and they use deep follow-up imaging obtained with the 4m Mayall Telescope at Kitt Peak National Observatory to derive their structural parameters.
Abstract: We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15? away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall Telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is 20 times smaller at only 3 pc.

213 citations


Journal ArticleDOI
TL;DR: In this article, the authors report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the RAVE survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy.
Abstract: We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the RAVE survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the beta Pictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the epsilon Cha group and two stars in the Tuc-Hor association. Based on the positive identifications we foreshadow a great potential of the RAVE database in progressing toward a full census of young moving groups in the solar neighbourhood.

68 citations


Posted Content
TL;DR: In this article, the survival of wide stellar binaries against repeated encounters with dark substructures orbiting in the dark matter haloes of dwarf spheroidal galaxies (dSphs) is examined.
Abstract: We use analytical and N-body methods to examine the survival of wide stellar binaries against repeated encounters with dark substructures orbiting in the dark matter haloes of dwarf spheroidal galaxies (dSphs). Our models adopt cosmologically-motivated conditions wherein dSphs are dark-matter dominated systems that form hierarchically and orbit about a host galaxy. Our analytical estimates show that wide binaries are disrupted at a rate that is proportional to the local density of dark substructures averaged over the life-time of the binary population. The fact that external tides can efficiently strip dark substructures from the outskirts of dSphs implies that the present number and distribution of binaries is strongly coupled with the mass evolution of individual galaxies. Yet we show that for the range of dynamical masses and Galactocentric distances spanned by Milky Way dSphs, a truncation in the separation function at a_max <~ 0.1 pc is expected in all these galaxies. An exception may be the Sagittarius dSph, which has lost most of is dark matter envelope to tides and is close to full disruption. Our simulations indicate that at separations larger than a_max the perturbed binary distribution scales as dN/da \propto a^{-2.1} independently of the mass and density of substructures. These results may be used to determine whether the binary separation function found in dwarf galaxies is compatible with the scale-free hierarchical picture that envisions the existence of dark substructures in all galactic haloes. We show that the ACS camera on board of the Hubble telescope may be able to test this prediction in dSphs at heliocentric distances <100 kpc, even if the binary fraction amounts only 10% of the stellar population.

10 citations