scispace - formally typeset
Search or ask a question

Showing papers by "Gian Luca Salvagno published in 2023"


Journal ArticleDOI
TL;DR: In this article , the feasibility and clinical value of using a novel, automated and high-throughput SARS-CoV-2 Interferon Gamma Release Assay (IGRA) combined with total anti-SARS CoV2 antibodies assessment, for evaluating the immune response after bivalent BNT162b2 vaccination was investigated.
Abstract: Abstract Objectives This study investigated the feasibility and clinical value of using a novel, automated and high-throughput SARS-CoV-2 Interferon Gamma Release Assay (IGRA), combined with total anti-SARS-CoV-2 antibodies assessment, for evaluating the immune response after bivalent BNT162b2 vaccination. Methods A cohort of healthcare workers, who already underwent primary vaccination and boosting with monovalent BNT162b2 vaccine, received a booster dose of the new BNT162b2 bivalent formulation. Blood samples were taken immediately before vaccination (T0) and 1 month afterwards (T1). Humoral and cellular immunity were assayed with Roche Elecsys Anti-SARS-CoV-2 and Roche Elecsys IGRA SARS-CoV-2, respectively. Results The study population consisted of 51 subjects (median age: 43 years; 51% females). Total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 values increased at T1 from 9,050 to 25,000 BAU/mL (p<0.001), and from 0.44 to 0.78 IU/mL (p=0.385), accounting for median increase of 2.0 and 1.6 folds, respectively. Increased T1 values of total anti-SARS-CoV-2 antibodies and IGRA SARS-CoV-2 were recorded in 100% and 68.6% subjects, respectively. In those with baseline values below the median, post-vaccine levels displayed larger increases of 3.3 and 5.1 folds for anti-SARS-CoV-2 total antibodies and IGRA SARS-CoV-2, respectively. The variation of total anti-SARS-CoV-2 antibodies was inversely associated with their T0 values (r=−0.97; p<0.001), whilst that of IGRA SARS-CoV-2 was inversely associated with its T0 value (r=−0.58; p<0.001). No other signifcant associations were found with demographical or clinical variables, including side effects. Conclusions The bivalent BNT162b2 vaccine booster enhances humoral and cellular immunity against SARS-CoV-2, especially in recipients with lower baseline biological protection.

4 citations


Journal ArticleDOI
TL;DR: In this paper , a cost-effectiveness analysis of different COVID-19 screening strategies based on rapid or laboratory-based SARS-CoV-2 antigen testing was published.
Abstract: Article Cost-effectiveness analysis of different COVID-19 screening strategies based on rapid or laboratory-based SARS-CoV-2 antigen testing was published on February 28, 2023 in the journal Clinical Chemistry and Laboratory Medicine (CCLM) (volume 0, issue 0).

2 citations


Journal ArticleDOI
23 Jan 2023-NDT plus
TL;DR: In this paper , the association of allelic variants with the history of nephrolithiasis was investigated, and the results suggest a possible role for CYP24A1 variants in the risk of kidney stones.
Abstract: ABSTRACT Background Idiopathic calcium nephrolithiasis (ICN) is a common condition with a complex phenotype influenced by both environmental and genetic factors. In our study we investigated the association of allelic variants with the history of nephrolithiasis. Methods We genotyped and selected 10 candidate genes potentially related to ICN from 3046 subjects participating in the INCIPE survey cohort (Initiative on Nephropathy, of relevance to public health, which is Chronic, possibly in its Initial stages, and carries a Potential risk of major clinical End-points), a study enrolling subjects from the general population in the Veneto region in Italy. Results Overall, 66 224 variants mapping on the 10 candidate genes were studied. A total of 69 and 18 variants in INCIPE-1 and INCIPE-2, respectively, were significantly associated with stone history (SH). Only two variants, rs36106327 (chr20:54 171 755, intron variant) and rs35792925 (chr20:54 173 157, intron variant) of the CYP24A1 gene were observed to be consistently associated with ICN. Neither variant has been previously reported in association with renal stones or other conditions. Carriers of CYP24A1 variants showed a significant increase in the ratio of 1,25 (OH)2 vitamin D to 25 (OH) vitamin D compared with controls (P = .043). Although not associated with ICN in this study, the rs4811494 CYP24A1 variant that was reported to be causative of nephrolithiasis was very prevalent in heterozygosity (20%). Conclusion Our data suggest a possible role for CYP24A1 variants in the risk of nephrolithiasis. Genetic validation studies in larger sample sets will be necessary to confirm our findings.

2 citations



Journal ArticleDOI
TL;DR: In this article , immunoassays for quantifying anti-SARS-CoV-2 S/N IgG/IgM antibodies against both spike (S) and nucleocapsid (N) proteins may be used for identifying previous SARS-Cov-2 infections.
Abstract: Abstract Objectives We planned this study to verify whether immunoassays for quantifying anti-SARS-CoV-2 IgG/IgM antibodies against both spike (S) and nucleocapsid (N) proteins may be used for identifying previous SARS-CoV-2 infections. Methods The study population consisted of a cohort of fully vaccinated healthcare workers. All study subjects underwent regular medical visits and molecular testing for diagnosing SARS-CoV-2 infections every 2–4 weeks between 2020–2022. Venous blood was drawn for measuring anti-SARS-CoV-2 antibodies with MAGLUMI 2019-nCoV lgG/IgM CLIA Assays directed against both SARS-CoV-2 S and N proteins. Results Overall, 31/53 (58.5%) subjects had tested positive for SARS-CoV-2 by RT-PCR throughout the study (24 once, 7 twice). No positive correlation was found between anti-SARS-CoV-2 S/N IgM antibodies and molecular test positivity. In univariate regression analysis, both a molecular test positivity (r=0.33; p=0.015) and the number of positive molecular tests (r=0.43; p=0.001), but not vaccine doses (r=−0.12; p=0.392), were significantly correlated with anti-SARS-CoV-2 S/N IgG antibodies. These two associations remained significant in multiple linear regression analysis (p=0.029 and p<0.001, respectively) after adjusting for sex, age, body mass index, and vaccine doses. In ROC curve analysis, anti-SARS-CoV-2 S/N IgG antibodies significantly predicted molecular test positivity (AUC, 0.69; 95% CI; 0.55–0.84), with the best cutoff of 0.05 AU/mL displaying 67.9% accuracy, 0.97 sensitivity, and 0.27 specificity. Conclusions Although anti-SARS-CoV-2 S/N IgG antibodies provide helpful information for identifying previous SARS-CoV-2 infections, a lower cutoff than that of sample reactivity should be used. Anti-SARS-CoV-2 S/N IgM antibodies using conventional cutoffs seem useless for this purpose.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the biological effects on circulating monocytes after challenge with SARS-CoV-2 recombinant spike protein and found that cellular complexity (i.e., the presence of granules, vacuoles and other cytoplasmic inclusions) increased in all samples.
Abstract: This study investigated the biological effects on circulating monocytes after challenge with SARS-CoV-2 recombinant spike protein. Whole blood collected from seven ostensibly healthy healthcare workers was incubated for 15 min with 2 and 20 ng/mL final concentration of recombinant spike protein of Ancestral, Alpha, Delta, and Omicron variants. Samples were analyzed with Sysmex XN and DI-60 analyzers. Cellular complexity (i.e., the presence of granules, vacuoles and other cytoplasmic inclusions) increased in all samples challenged with the recombinant spike protein of the Ancestral, Alpha, and Delta variants, but not in those containing Omicron. The cellular content of nucleic acids was constantly decreased in most samples, achieving statistical significance in those containing 20 ng/mL of Alpha and Delta recombinant spike proteins. The heterogeneity of monocyte volumes significantly increased in all samples, achieving statistical significance in those containing 20 ng/mL of recombinant spike protein of the Ancestral, Alpha and Delta variants. The monocyte morphological abnormalities after spike protein challenge included dysmorphia, granulation, intense vacuolization, platelet phagocytosis, development of aberrant nuclei, and cytoplasmic extrusions. The SARS-CoV-2 spike protein triggers important monocyte morphological abnormalities, more evident in cells challenged with recombinant spike protein of the more clinically severe Alpha and Delta variants.



Journal ArticleDOI
TL;DR: Early kinetics of cellular immunity in recipients of bivalent BNT162b2 vaccine were investigated in this article , where a proof-of-concept study was conducted. But the authors focused on the early kinetics in the recipients of the vaccine.
Abstract: Article Early kinetics of cellular immunity in recipients of bivalent BNT162b2 vaccine: a proof-of-concept study was published on March 13, 2023 in the journal Clinical Chemistry and Laboratory Medicine (CCLM) (volume 0, issue 0).

Journal ArticleDOI
TL;DR: In this article , the SARS-CoV-2-IgG positivity was detected in 16/339 (4%) sera, with paired CSF positivity in 3/16.
Abstract: Abstract It is well established that neurological and non-neurological autoimmune disorders can be triggered by viral infections. It remains unclear whether SARS-CoV-2 infection induces similar conditions and whether they show a distinctive phenotype. We retrospectively identified patients with acute inflammatory CNS conditions referred to our laboratory for antibody testing during the pandemic (March 1 to August 31, 2020). We screened SARS-COV-2 IgA/IgG in all sera by ELISA and confirmed the positivity with additional assays. Clinical and paraclinical data of SARS-COV-2-IgG seropositive patients were compared to those of seronegative cases matched for clinical phenotype, geographical zone, and timeframe. SARS-CoV-2-IgG positivity was detected in 16/339 (4%) sera, with paired CSF positivity in 3/16. 5 of these patients had atypical demyelinating disorders and 11 autoimmune encephalitis syndromes. 9/16 patients had a previous history of SARS-CoV-2 infection and 6 of them were symptomatic. In comparison with 32 consecutive seronegative controls, SARS-CoV-2-IgG-positive patients were older, frequently presented with encephalopathy, had lower rates of CSF pleocytosis and other neurological autoantibodies, and were less likely to receive immunotherapy. When SARS-CoV-2 seropositive versus seronegative cases with demyelinating disorders were compared no differences were seen. Whereas seropositive encephalitis patients less commonly showed increased CSF cells and protein, our data suggest that an antecedent symptomatic or asymptomatic SARS-CoV-2 infection can be detected in patients with autoimmune neurological conditions. These cases are rare, usually do not have specific neuroglial antibodies.

Journal ArticleDOI
TL;DR: In this article , the MAG-CLIA SARS-CoV-2 Ag was used as a surrogate of molecular testing for identifying high viral load samples, which could be used as surrogate for detecting high viral loads.
Abstract: Abstract Objectives Given that SARS-CoV-2 antigen tests will represent a pillar for supporting or surrogating molecular testing in the endemic period, we report here the clinical performance of the new SNIBE Maglumi SARS-CoV-2 antigen fully-automated chemiluminescent immunoassay (MAG-CLIA SARS-CoV-2 Ag). Methods The study population consisted of 181 subjects (mean age 61 ± 21 years; 92 females) undergoing coronavirus disease 2019 (COVID-19) testing at the local diagnostic facility, from December 2022 to February 2023. Routine diagnostic practice involved the collection of a double nostril nasopharyngeal swab, analyzed in duplicate with SARS-CoV-2 antigen (MAG-CLIA SARS-CoV-2 Ag) and molecular (Altona Diagnostics RealStar SARS-CoV-2 RT-PCR Kit) tests. Results A significant Spearman’s correlation was found between MAG-CLIA SARS-CoV-2 Ag and mean Ct values of SARS-CoV-2 E and S genes (r=−0.95; p<0.001). In all nasopharyngeal samples, the area under the curve (AUC) of MAG-CLIA SARS-CoV-2 Ag was 0.86 (95% CI, 0.81–0.90), with 0.71 sensitivity and 1.00 specificity at 7 ng/L cut-off, increasing to 0.98 (95% CI, 0.96–1.00) AUC and 0.96 sensitivity (with 0.97 specificity) in high viral load samples. When SARS-CoV-2 N protein concentration was replaced with raw instrumental readings (i.e., relative light units [RLU]), the AUC in all samples increased to 0.94. A RLU value of 945 was associated with 88.4% accuracy, 0.85 sensitivity, 0.95 specificity, 0.77 negative predictive value (NPV) and 0.97 positive predictive value (PPV), respectively. Conclusions We found satisfactory analytical performance of MAG-CLIA SARS-CoV-2 Ag, which could be used as surrogate of molecular testing for identifying high viral load samples. Broadening the reportable range of values may generate even better performance.

Journal ArticleDOI
TL;DR: In this article , the authors investigated T2D-related changes in peripheral mononucleated blood cells' (PBMCs) mitochondrial function in two groups of women (CTRL vs.T2D) and found a significant reduction of mitochondrial respiration in the ADP-stimulated state (OXPHOS; −30%, p = 0.004) and maximal non-coupled respiration (ET; − 30%, p < 0.0001).
Abstract: Type 2 diabetes (T2D) is a multisystem disease that is the subject of many studies, but the earliest cause of the disease has yet to be elucidated. Mitochondrial impairment has been associated with diabetes in several tissues. To extend the association between T2D and mitochondrial impairment to blood cells, we investigated T2D-related changes in peripheral mononucleated blood cells’ (PBMCs) mitochondrial function in two groups of women (CTRL vs. T2D; mean age: 54.1 ± 3.8 vs. 60.9 ± 4.8; mean BMI 25.6 ± 5.2 vs. 30.0 ± 5), together with a panel of blood biomarkers, anthropometric measurements and physiological parameters (VO2max and strength tests). Dual-energy X-ray absorptiometry (DXA) scan analysis, cardio-pulmonary exercise test and blood biomarkers confirmed hallmarks of diabetes in the T2D group. Mitochondrial function assays performed with high resolution respirometry highlighted a significant reduction of mitochondrial respiration in the ADP-stimulated state (OXPHOS; −30%, p = 0.006) and maximal non-coupled respiration (ET; −30%, p = 0.004) in PBMCs samples from the T2D group. The total glutathione antioxidant pool (GSHt) was significantly reduced (−38%: p = 0.04) in plasma samples from the T2D group. The fraction of glycated hemoglobin (Hb1Ac) was positively associated with markers of inflammation (C-reactive protein-CRP r = 0.618; p = 0.006) and of dyslipidemia (triglycerides-TG r = 0.815; p < 0.0001). The same marker (Hb1Ac) was negatively associated with mitochondrial activity levels (OXPHOS r = −0.502; p = 0.034; ET r = −0.529; p = 0.024). The results obtained in overweight postmenopausal women from analysis of PBMCs mitochondrial respiration and their association with anthropometric and physiological parameters indicate that PBMC could represent a reliable model for studying T2D-related metabolic impairment and could be useful for testing the effectiveness of interventions targeting mitochondria.

Journal ArticleDOI
TL;DR: In this paper , the authors report the results of a real-world assessment of the clinical performance of the new COVID-VIRO ALL IN device and compare it to RT-PCR and SARS-CoV-2 RDT-Ag.
Abstract: Abstract Objectives Since the external validation of severe acute respiratory syndrome coronavirus 2 antigen rapid diagnostic tests (SARS-CoV-2 RDT-Ags) is a necessary requisite before they can be introduced into routine clinical practice, this study reports the results of a real-world assessment of the clinical performance of the new COVID-VIRO ALL IN device. Methods The study population consisted in 165 outpatients (median age: 43 years, range: 14–68 years; 66.1% females) who had paired nasal and nasopharyngeal samples collected upon hospital presentation. The samples were concomitantly tested with the AAZ-LMB COVID-VIRO ALL IN SARS-CoV-2 RDT-Ag and with Cepheid Xpert Xpress SARS-CoV-2 real-time reverse transcription polymerase chain reaction (RT-PCR). Results The number of subjects with positive RT-PCR results (i.e., mean Ct value <45) was 116 (70.3%), 109 (66.1%) and 86 (52.1%) with mean Ct values <37 and <30, respectively. In all RT-PCR positive samples, COVID-VIRO ALL IN displayed 78.8% agreement, 0.698 sensitivity, 1.000 specificity, 0.583 negative predictive value (NPV) and 1.000 positive predictive value (PPV) compared to RT-PCR. The median Ct value of samples testing positive with COVID-VIRO ALL IN was significantly lower than those testing negative (22.8 vs. 32.2; p<0.001). In samples with high viral load (i.e., Ct value <30), COVID-VIRO ALL IN displayed 92.1% agreement, 0.895 sensitivity, 0.949 specificity, 0.983 NPV and 0.951 PPV compared to RT-PCR. Conclusions Although the diagnostic performance of COVID-VIRO ALL IN do not exactly match those of the manufacturer, its high NPV in high viral load samples would enable fast-track and rapid identification of highly contagious subjects.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the effects of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant spike protein variants on platelet morphology and activation.
Abstract: Abstract Platelets are central elements of hemostasis and also play a pivotal role in the pathogenesis of thrombosis in coronavirus disease 2019. This study was planned to investigate the effects of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant spike protein variants on platelet morphology and activation. Citrated whole blood collected from ostensibly healthy subjects was challenged with saline (control sample) and with 2 and 20 ng/mL final concentration of SARS-CoV-2 recombinant spike protein of Ancestral, Alpha, Delta, and Omicron variants. Platelet count was found to be decreased with all SARS-CoV-2 recombinant spike protein variants and concentrations tested, achieving the lowest values with 20 ng/mL Delta recombinant spike protein. The mean platelet volume increased in all samples irrespective of SARS-CoV-2 recombinant spike protein variants and concentrations tested, but especially using Delta and Alpha recombinant spike proteins. The values of both platelet function analyzer-200 collagen-adenosine diphosphate and collagen-epinephrine increased in all samples irrespective of SARS-CoV-2 recombinant spike protein variants and concentrations tested, and thus reflecting platelet exhaustion, and displaying again higher increases with Delta and Alpha recombinant spike proteins. Most samples where SARS-CoV-2 recombinant spike proteins were added were flagged as containing platelet clumps. Morphological analysis revealed the presence of a considerable number of activated platelets, platelet clumps, platelet-monocyte, and platelet-neutrophils aggregates, especially in samples spiked with Alpha and Delta recombinant spike proteins at 20 ng/mL. These results provide support to the evidence that SARS-CoV-2 is capable of activating platelets through its spike protein, though such effect varies depending on different spike protein variants.