scispace - formally typeset
Search or ask a question

Showing papers by "Gürel Çam published in 2008"


Journal ArticleDOI
TL;DR: In this paper, the applicability of friction stir welding to brasses, namely 90%Cu-10% Zn and 70% Cu-30%Zn alloys, has been investigated.
Abstract: More successful results have been obtained in butt- and overlap-joining of Al-alloy plates by a recently developed solid state joining technique, namely friction stir welding (FSW), than in more conventional fusion welding processes. In this joining technique, no fusion takes place in the joint area of the plates welded. This novel joining method also offers the potential to weld some other materials rather than Al-alloys, such as Mg-alloys, brasses and low strength steels. In this study, the applicability of friction stir welding to brasses, namely 90 %Cu-10 %Zn and 70 %Cu-30 %Zn alloys, has been investigated. The joint performance was determined by conducting optical microscopy, microhardness mesurements and mechanical testing (e.g. tensile and bend tests). The effect of welding speed on the joint quality at a given rotational speed of the stirring pin (i.e. 1600 rpm) was also determined for both alloys. The highest joint performances were obtained at a welding speed of 210 mm/min for both alloys.

73 citations



Journal ArticleDOI
TL;DR: In this paper, the diffusion bondability and joint characteristics of TiAl and Ti-6Al-4V alloys were studied and the mechanical behavior of the bond interface was evaluated by shear testing.
Abstract: Ti-alloys, particularly TiAl, are becoming attractive for the use in the production of high-temperature components such as turbine blades and exhaust valves, owing to their low density. However, these components may not be cost-effectively cast totally from TiAl alloys and casting defects may occur in investment casting of these complex parts. Other manufacturing technologies, such as machining, cannot be economically employed in these very hard and brittle materials. Production of bi-material or even multi-material TiAl components can therefore offer an alternative fabrication route provided that the joining and joint properties of these materials are well understood. In this study, the diffusion bondability and joint characteristics of TiAl and Ti–6Al–4V alloys were studied. These two different materials were joined by using various bonding parameters. Metallographic investigations were conducted for characterization of the interface region of these dissimilar joints. Furthermore, the mechanical behavior of the bond interface was evaluated by shear testing. Both results on the microstructural and mechanical characterization provided the optimum bonding conditions for the production of TiAl–Ti6Al4V hybrid joints.

31 citations