Author
Hamid R. Sheikh
Other affiliations: Texas Instruments, University of Texas at Dallas, University of Texas at Austin
Bio: Hamid R. Sheikh is an academic researcher from Samsung. The author has contributed to research in topics: Image quality & Image processing. The author has an hindex of 21, co-authored 70 publications receiving 42234 citations. Previous affiliations of Hamid R. Sheikh include Texas Instruments & University of Texas at Dallas.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.
30,333 citations
[...]
TL;DR: An image information measure is proposed that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image and combined these two quantities form a visual information fidelity measure for image QA.
Abstract: Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.
2,743 citations
[...]
TL;DR: This paper presents results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects and is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image.
Abstract: Measurement of visual quality is of fundamental importance for numerous image and video processing applications, where the goal of quality assessment (QA) algorithms is to automatically assess the quality of images or videos in agreement with human quality judgments. Over the years, many researchers have taken different approaches to the problem and have contributed significant research in this area and claim to have made progress in their respective domains. It is important to evaluate the performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of these methods. In this paper, we present results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects. The "ground truth" image quality data obtained from about 25 000 individual human quality judgments is used to evaluate the performance of several prominent full-reference image quality assessment algorithms. To the best of our knowledge, apart from video quality studies conducted by the Video Quality Experts Group, the study presented in this paper is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image. Moreover, we have made the data from the study freely available to the research community . This would allow other researchers to easily report comparative results in the future
2,190 citations
[...]
TL;DR: This paper proposes a novel information fidelity criterion that is based on natural scene statistics and derives a novel QA algorithm that provides clear advantages over the traditional approaches and outperforms current methods in testing.
Abstract: Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Traditionally, image QA algorithms interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by arbitrary signal fidelity criteria. In this paper, we approach the problem of image QA by proposing a novel information fidelity criterion that is based on natural scene statistics. QA systems are invariably involved with judging the visual quality of images and videos that are meant for "human consumption". Researchers have developed sophisticated models to capture the statistics of natural signals, that is, pictures and videos of the visual environment. Using these statistical models in an information-theoretic setting, we derive a novel QA algorithm that provides clear advantages over the traditional approaches. In particular, it is parameterless and outperforms current methods in our testing. We validate the performance of our algorithm with an extensive subjective study involving 779 images. We also show that, although our approach distinctly departs from traditional HVS-based methods, it is functionally similar to them under certain conditions, yet it outperforms them due to improved modeling. The code and the data from the subjective study are available at [1].
1,132 citations
[...]
TL;DR: A Structural Similarity Index is developed and its promise is demonstrated through a set of intuitive ex- amples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual im- age quality traditionally attempt to quantify the visibility of errors (dierences) between a distorted image and a ref- erence image using a variety of known properties of the hu- man visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative com- plementary framework for quality assessment based on the degradation of structural information. As a specific exam- ple of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive ex- amples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MatLab imple- mentation of the proposed algorithm is available online at http://www.cns.nyu.edu/~lcv/ssim/.
1,037 citations
Cited by
More filters
[...]
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.
30,333 citations
[...]
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.
9,134 citations
Posted Content•
[...]
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.
7,368 citations
[...]
TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Abstract: We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.
5,568 citations
[...]
TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
5,157 citations