scispace - formally typeset
Search or ask a question

Showing papers by "Harvey J. Grill published in 2007"


Journal ArticleDOI
TL;DR: Leptin-responsive neurons in the hindbrain are primarily located in the mNTS at the level of the area postrema, a key vagal afferent projection zone of the GI system, and leptin delivered to the hind brain is sufficient to potentiate the intake-suppressive effects of an otherwise ineffective volume of gastric distension.
Abstract: Leptin reduces food intake by an unspecified mechanism. Studies show that forebrain ventricular leptin delivery increases the inhibitory effects of gastrointestinal (GI) stimulation on intake and amplifies the electrophysiological response to gastric distension in neurons of the medial subnucleus of the nucleus tractus solitarius (mNTS). However, forebrain ventricular delivery leaves unspecified the neuroanatomical site(s) mediating leptin's effect on intake. Detailed anatomical analysis in rats and mice by phosphorylated signal transducer and activator of transcription 3 immunohistochemistry shows that hindbrain leptin-responsive neurons are located exclusively within the mNTS. Here, we investigate 1) whether leptin and gastric distension affect the same mNTS neurons and 2) whether the intake-inhibitory action of gastric distension is potentiated by hindbrain leptin delivery. Twenty-five minutes after gastric balloon distension or sham distension, rats were injected with leptin or vehicle and killed 35 min later. Double-fluorescent immunohistochemistry for phosphorylated signal transducer and activator of transcription 3 and c-Fos revealed that about 40% of leptin-responsive cells also respond to gastric distension. A paradigm was then developed to examine the relationship between leptin and gastric distension volume on intake inhibition. At subthreshold levels, hindbrain ventricular leptin or distension volume were without effect. When combined, an interaction occurred that significantly reduced food intake. We conclude that 1) leptin-responsive neurons in the hindbrain are primarily located in the mNTS at the level of the area postrema, a key vagal afferent projection zone of the GI system; 2) a significant proportion of leptin-responsive neurons in the mNTS are activated by stomach distension; and 3) leptin delivered to the hindbrain is sufficient to potentiate the intake-suppressive effects of an otherwise ineffective volume of gastric distension. These results are consistent with the hypothesis that leptin acts directly on neurons within the mNTS to reduce food intake through an interaction with GI signal processing.

143 citations


Journal ArticleDOI
TL;DR: Animal studies have revealed brain regions that control homeostatic feeding, but the rampant overeating contributing to the obesity epidemic suggests the participation of "nonhomeostatic" control centers.

46 citations


Journal ArticleDOI
TL;DR: The results show that leptin can change body fat independent of a change in food intake or energy expenditure, that the forebrain normally prevents leptin from inhibiting energy expenditure through mechanisms initiated in the caudal brainstem or peripheral tissues, and that the leptin response in both intact and CD rats is determined by the energy status of the animal.
Abstract: Peripheral infusions of physiological doses of leptin decrease body fat mass, but it is not known whether this results from direct effects on peripheral tissue or activation of central leptin receptors. In this study, we infused chronically decerebrate (CD) rats, in which the forebrain was surgically isolated from the caudal brainstem, with 60 μg leptin/d or PBS for 14 d from ip mini-osmotic pumps. The CD rats were tube fed an amount of food equivalent to the intake of ad libitum-fed intact controls or 75% of this amount to account for their reduced energy expenditure. Control rats fed ad libitum or tube fed 75, 100, or 125% of their ad libitum intake also were peripherally infused with leptin or PBS. CD rats had a lower serum testosterone, energy expenditure, and lean body mass compared with controls but had increased levels of adiponectin and leptin and were obese. Leptin increased body fat and decreased energy expenditure during the light period in 100%-fed CD rats, but not 75%-fed CD rats. Leptin decr...

30 citations


Journal ArticleDOI
01 Jul 2007-Appetite
TL;DR: These studies demonstrate that the caudal brainstem is sufficient to mediate GLP-1R-mediated inhibition of GE and that forebrain processing is not required.

1 citations