scispace - formally typeset
Search or ask a question

Showing papers by "Hee Jung Choi published in 2019"


Journal ArticleDOI
29 Nov 2019-Science
TL;DR: A single-molecule force microscopy technique that monitors the folding of helical membrane proteins in vesicle and bicelle environments and used the approach to characterize the folding pathways of the Escherichia coli rhomboid protease GlpG and the human β2-adrenergic receptor.
Abstract: To understand membrane protein biogenesis, we need to explore folding within a bilayer context. Here, we describe a single-molecule force microscopy technique that monitors the folding of helical membrane proteins in vesicle and bicelle environments. After completely unfolding the protein at high force, we lower the force to initiate folding while transmembrane helices are aligned in a zigzag manner within the bilayer, thereby imposing minimal constraints on folding. We used the approach to characterize the folding pathways of the Escherichia coli rhomboid protease GlpG and the human β2-adrenergic receptor. Despite their evolutionary distance, both proteins fold in a strict N-to-C-terminal fashion, accruing structures in units of helical hairpins. These common features suggest that integral helical membrane proteins have evolved to maximize their fitness with cotranslational folding.

43 citations


Journal ArticleDOI
TL;DR: The results suggest that a Tet-Off β23 cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates and Brain-permeable PCIII or its derivatives could be beneficial for eliminating establishedprotein aggregates.
Abstract: Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (β23) expression model to screen potential lead compounds inhibiting β23-induced toxicity. Highthroughput screening identified several natural compounds as nuclear β23 inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic β23 aggregates and protects SH-SY5Y cells from toxicity induced by β23 expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and α-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and α-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited α-synuclein aggregation but also disaggregated preformed α-synuclein fibrils in vitro . Taken together, our results suggest that a Tet-Off β23 cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.

4 citations