scispace - formally typeset
H

Hawoong Jeong

Researcher at KAIST

Publications -  200
Citations -  46489

Hawoong Jeong is an academic researcher from KAIST. The author has contributed to research in topics: Complex network & Evolving networks. The author has an hindex of 50, co-authored 191 publications receiving 43724 citations. Previous affiliations of Hawoong Jeong include Asia Pacific Center for Theoretical Physics & Seoul National University.

Papers
More filters
Journal ArticleDOI

Error and attack tolerance of complex networks

TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Journal ArticleDOI

Lethality and centrality in protein networks

TL;DR: It is demonstrated that the phenotypic consequence of a single gene deletion in the yeast Saccharomyces cerevisiae is affected to a large extent by the topological position of its protein product in the complex hierarchical web of molecular interactions.
Journal ArticleDOI

The large-scale organization of metabolic networks

TL;DR: In this paper, the authors present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life, and show that despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems.

The large-scale organization of metabolic networks

TL;DR: This analysis of metabolic networks of 43 organisms representing all three domains of life shows that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems.
Journal ArticleDOI

Diameter of the World-Wide Web

TL;DR: The World-Wide Web becomes a large directed graph whose vertices are documents and whose edges are links that point from one document to another, which determines the web's connectivity and consequently how effectively the authors can locate information on it.