scispace - formally typeset
Search or ask a question

Showing papers by "Heini Wernli published in 2004"


Journal ArticleDOI
TL;DR: In this article, the authors presented the first climatology of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere.
Abstract: This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The climatology was constructed by using 15 yr (1979‐93) of reanalysis data and calculating 355 million trajectories starting daily from a 1 83 18 global grid at 500 m above ground level (AGL). WCBs were defined as those trajectories that, during a period of 2 days, traveled northeastward and ascended by at least 60% of the zonally and climatologically averaged tropopause height. The mean specific humidity at WCB starting points in different regions varies from 7 to 12 g kg 21. This moisture is almost entirely precipitated out, leading to an increase of potential temperature of 15‐22 K along a WCB trajectory. Over the course of 3 days, a WCB trajectory produces, on average, about four (six) times as much precipitation as a global (extratropical) average trajectory starting from 500 m AGL. WCB starting points are most frequently located between approximately 258 and 458N and between about 208 and 458S. In the Northern Hemisphere (NH), there are two distinct frequency maxima east of North America and east of Asia, whereas there is much less zonal variability in the Southern Hemisphere (SH). In the NH, WCBs are almost an order of magnitude more frequent in January than in July, whereas in the SH the seasonal variation is much weaker. In order to study the relationship between WCBs and cyclones, an independent cyclone climatology was used. Most of the WCBs were found in the vicinity of a cyclone center, whereas the reverse comparison revealed that cyclones are normally accompanied by a strong WCB only in the NH winter. In the SH, this is not the case throughout the year. Particularly around Antarctica, where cyclones are globally most frequent, practically no strong WCBs are found. These cyclones are less influenced by diabatic processes and, thus, they are associated with fewer high clouds and less precipitation than cyclones in other regions. In winter, there is a highly significant correlation between the North Atlantic Oscillation (NAO) and the WCB distribution in the North Atlantic: In months with a high NAO index, WCBs are about 12% more frequent and their outflow occurs about 10 8 latitude farther north and 208 longitude farther east than in months with a low NAO index. The differences in the WCB inflow regions are relatively small between the two NAO phases. During high phases of the Southern Oscillation, WCBs occur more (less) frequent around Australia (in the South Atlantic).

311 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an analysis of trajectory calculations in the tropical tropopause layer (TTL) based on European Centre for Medium-Range Weather Forecasts (ECMWF) analysis wind and temperature fields.
Abstract: [1] We present an analysis of trajectory calculations in the tropical tropopause layer (TTL) based on European Centre for Medium-Range Weather Forecasts (ECMWF) analysis wind and temperature fields. Over 500,000 forward and backward trajectories were calculated for January/February and July/August 2001. We analyze the pathways between 340 K and 400 K potential temperature (θ) of those trajectories involved in troposphere-to-stratosphere transport (TST). Even though trajectory calculations in this region may suffer from deficiencies in the underlying vertical wind field, they incorporate not only slow radiative ascent but also effects of deep convection, zonal and meridional transport, and their regional variability. From the trajectory calculations we derive a mean residence time of air parcels in the TTL, which shows a maximum at θ ≈360 K of ∼13 days for a change in potential temperature of ±10 K. The analysis of trajectory pathways reveals that approximately 80% of the trajectories ascending into the stratosphere enter the TTL over the western Pacific. Upon further ascent, they typically travel ∼5000–10,000 km before they arrive at the location where they assume minimum water mixing ratios. These pathways show regional and seasonal patterns and are largely controlled by the upper level circulation of the Asian-Australian monsoon, the northern hemispherical subtropical jet and the equatorial easterly jet from South Asia to Africa. As a consequence of the interplay of these meteorological systems, about 70% of TST trajectories assume their minimum water mixing ratio over the western Pacific, which shows also a global minimum in tropopause temperatures. Average water mixing ratios of air after TST are χH2O = 1.6 ppmv for January/February and χH2O = 3.6 ppmv for July/August 2001. Mixing of stratospherically young air, which just underwent TST, with older air masses entering the lower tropical stratosphere sideways yields an estimate of χH2O = 2.3 ppmv for January/February and χH2O = 3.7 ppmv for July/August for air at θ = 400 K, which compares favorably with satellite observations. Our analysis emphasizes the importance of particular pathways for tropical TST, with the western Pacific being the dominant source of stratospheric air in general and being the place, in particular, where ∼70% of tropical TST assumes its final water mixing ratio.

194 citations


Journal ArticleDOI
TL;DR: In this paper, airborne in-situ trace gas measurements were performed on eight campaigns between November 2001 and July 2003 during the SPURT-project (SPURenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region).
Abstract: . We present airborne in-situ trace gas measurements which were performed on eight campaigns between November 2001 and July 2003 during the SPURT-project (SPURenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region). The measurements on a quasi regular basis allowed an overview of the seasonal variations of the trace gas distribution in the tropopause region over Europe from 35°-75°N to investigate the influence of transport and mixing across the extratropical tropopause on the lowermost stratosphere. From the correlation of CO and O 3 irreversible mixing of tropospheric air into the lowermost stratosphere is identified. The CO distribution indicates that transport and subsequent mixing of tropospheric air across the extratropical tropopause predominantly affects a layer, which closely follows the shape of the local tropopause. In addition, the seasonal cycle of CO 2 illustrates the strong coupling of that layer to the extratropical troposphere. Both, horizontal gradients of CO on isentropes as well as the CO-O 3 -distribution in the lowermost stratosphere reveal that the influence of quasi-horizontal transport and subsequent mixing weakens with distance from the local tropopause. The mixing layer extends to about 25 K in potential temperature above the local tropopause exhibiting only a weak seasonality. However, at large distances from the tropopause a significant influence of tropospheric air is still evident. The relation between N 2 O and CO 2 indicates that a significant contribution of air originating from the tropical tropopause contributes to the background air in the extratropical lowermost stratosphere.

150 citations


Journal ArticleDOI
TL;DR: In this article, the authors report on a flight on 10 November 2001 leading from Hohn, Germany (52oN) to Faro, Portugal (37oN), through a strongly developed deep stratospheric intrusion.
Abstract: . Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52oN) to Faro, Portugal (37oN) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM model are seen only up to about tropopause height at 340 hPa and 270hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.

82 citations


Journal ArticleDOI
TL;DR: In this paper, a case study on the formation and evolution of an ice-supersaturated region (ISSR) that was detected by a radiosonde in NE Germany at 06:00 UTC 29 November 2000 is presented.
Abstract: . A case study is presented on the formation and evolution of an ice-supersaturated region (ISSR) that was detected by a radiosonde in NE Germany at 06:00 UTC 29 November 2000. The ISSR was situated in the vicinity of the outflow region of a warm conveyor belt associated with an intense event of cyclogenesis in the eastern North Atlantic. Using ECMWF analyses and trajectory calculations it is determined when the air parcels became supersaturated and later subsaturated again. In the case considered, the state of air parcel supersaturation can last for longer than 24h. The ISSR was unusually thick: while the mean vertical extension of ISSRs in NE Germany is about 500m, the one investigated here reached 3km. The ice-supersaturated region investigated was bordered both vertically and horizontally by strongly subsaturated air. Near the path of the radiosonde the ISSR was probably cloud free, as inferred from METEOSAT infrared images. However, at other locations within the ISSR it is probable that there were cirrus clouds. Relative humidity measurements obtained by the Lindenberg radiosonde are used to correct the negative bias of the ECMWF humidity and to construct two-dimensional maps of ice supersaturation over Europe during the considered period. A systematic backward trajectory analysis for the ISSRs on these maps shows that the ISSR air masses themselves experienced only a moderate upward motion during the previous days, whereas parts of the ISSRs were located just above strongly ascending air masses from the boundary layer. This indicates qualitatively that warm conveyor belts associated with mid-latitude cyclogenesis are disturbances that can induce the formation of ISSRs in the upper troposphere. The ISSR maps also lead us to a new perception of ISSRs as large dynamic regions of supersaturated air where cirrus clouds can be embedded at some locations while there is clear air at others.

69 citations


Posted ContentDOI
TL;DR: In this paper, the impact of earlier winter (before March) polar ozone destruction on mid-latitude ozone depletion was quantified by using a photo-chemical box-model.
Abstract: . For the winter 1999/2000 transport of air masses out of the vortex to mid-latitudes and ozone destruction inside and outside the northern polar vortex is studied to quantify the impact of earlier winter (before March) polar ozone destruction on mid-latitude ozone. Nearly 112 000 trajectories are started on 1 December 1999 on 6 different potential temperature levels between 500–600 K and for a subset of these trajectories photo-chemical box-model calculations are performed. We linked a decline of −0.9% of mid-latitude ozone in this layer occurring in January and February 2000 to ozone destruction inside the vortex and successive transport of these air masses to mid-latitudes. Further, the impact of denitrification, PSC-occurrence and anthropogenic chlorine loading on future stratospheric ozone is determined by applying various scenarios. Lower stratospheric temperatures and denitrification were found to play the most important role in the future evolution of polar ozone depletion.

5 citations