scispace - formally typeset
Search or ask a question

Showing papers by "Hsi-Ya Huang published in 2021"


Journal ArticleDOI
TL;DR: In this paper, a chiral catalyst based on the combination of the amino acid, l-proline (Pro), and the enzyme porcine pancreas lipase (PPL) was used for asymmetric carbon-carbon bond formation.
Abstract: In this paper, we describe the facile preparation of a chiral catalyst by the combination of the amino acid, l-proline (Pro), and the enzyme, porcine pancreas lipase (PPL), immobilized on a microporous metal-organic framework (PPL-Pro@MOF). The multipoint immobilization of PPL onto the MOF is made possible with the aid of Pro, which also provided a chiral environment for enhanced enantioselectivity. The application of the microporous MOF is pivotal in maintaining the catalytic activity of PPL, wherein it prevented the leaching of Pro during the catalytic reaction, leading to the enhanced activity of PPL. The prepared biocatalyst was applied in asymmetric carbon-carbon bond formation, demonstrating the potential of this simple approach for chemical transformations.

7 citations


Journal ArticleDOI
TL;DR: In this article, the α-amylase was first disrupted using a combination of urea, dithiothreitol (DTT), and iodoacetamide (IAA).
Abstract: This work presents an efficient and facile strategy to prepare an α-amylase bioreactor. As enzymes are quite large to be immobilized inside metal-organic frameworks (MOFs), the tertiary and quaternary structures of α-amylase were first disrupted using a combination of urea, dithiothreitol (DTT), and iodoacetamide (IAA). After losing its tertiary structure, the unfolded proteins can now penetrate into the microporous MOFs, affording fragmented α-amylase@MOF bioreactors. Among the different MOFs evaluated, UiO-66 gave the most promising potential due to the size-matching effect of the α-helix of the fragmented α-amylase with the pore size of UiO-66. The prepared bioreactor exhibited high yields of small carbohydrate (maltose) even when reused up to 15 times (>80% conversion).

2 citations