scispace - formally typeset
Search or ask a question

Showing papers by "I. Bellas-Velidis published in 2019"


Journal ArticleDOI
L. Eyer1, L. Rimoldini1, M. Audard2, Richard I. Anderson1  +451 moreInstitutions (75)
TL;DR: In this article, the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variabilityrelated changes in colour and brightness induce "motions".
Abstract: Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.

119 citations


Journal ArticleDOI
TL;DR: In this paper, a catalogue of active galactic nuclei (AGNs) selected through optical variability using all publicly available z-band Hubble Space Telescope images in the GOODS-South field is presented.
Abstract: Identifying Active Galactic Nuclei (AGNs) through their X-ray emission is efficient, but necessarily biased against X-ray-faint objects. We aim to characterize this bias by comparing X-ray-selected AGNs to the ones identified through optical variability and mid-IR colours. We present a catalogue of AGNs selected through optical variability using all publicly available z-band Hubble Space Telescope images in the GOODS-South field. For all objects in the catalogue, we compute X-ray upper limits or discuss detections in the deepest available 7 Ms Chandra Deep Field South images and present the Spitzer/IRAC mid-IR colours. For the variability study, we consider only sources observed over at least five epochs and over a time baseline of up to ten years. We adopt the elevated median absolute deviation as a variability indicator robust against individual outlier measurements and identify 113 variability-selected AGN candidates. Among these, 26 have an X-ray counterpart and lie within the conventional AGN area in the FX/Fopt diagram. The candidates with X-ray upper limits are on average optically fainter, have higher redshifts compared to the X-ray detected ones and are consistent with low luminosity AGNs. Out of 41 variable optical sources with IR detections, 13 fulfill the IR AGN colour selection criteria. Our work emphasizes the importance of optical variability surveys for constructing complete samples of AGNs including the ones that remain undetected even by the deepest X-ray and IR surveys.

20 citations



Posted Content
TL;DR: NELIOTA (NEO Lunar Impacts and Optical TrAnsients) as discussed by the authors is an ESA-funded lunar monitoring project, which aims to determine the size-frequency distribution of small Near-Earth Objects via detection of impact flashes on the surface of the Moon.
Abstract: NELIOTA (NEO Lunar Impacts and Optical TrAnsients) is an ESA-funded lunar monitoring project, which aims to determine the size-frequency distribution of small Near-Earth Objects (NEOs) via detection of impact flashes on the surface of the Moon. A prime focus, high-speed, twin-camera system providing simultaneous observations in two photometric bands at a rate of 30 frames-per-second on the 1.2 m Kryoneri telescope of the National Observatory of Athens was commissioned for this purpose. A dedicated software processes the images and automatically detects candidate lunar impact flashes, which are then validated by an expert user. The four year observing campaign began in February 2017 and has so far detected more than 40 lunar impact events. The software routinely detects satellites, which typically appear as streaks or dots crossing the lunar disk. To avoid confusing these events with real flashes, we check different available catalogs with spacecraft orbital information and exclude spacecraft identifications.

1 citations