Author

# Igor A. Khovanov

Other affiliations: Lancaster University, Saratov State University, Humboldt University of Berlin

Bio: Igor A. Khovanov is an academic researcher from University of Warwick. The author has contributed to research in topics: Attractor & Bistability. The author has an hindex of 14, co-authored 83 publications receiving 745 citations. Previous affiliations of Igor A. Khovanov include Lancaster University & Saratov State University.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: A theoretical analysis based on the generic model of a self-sustained oscillator demonstrates that observations of coherence resonance for a semiconductor laser with short optical feedback close to Hopf bifurcations are of general nature and are related to the fact that the damping depends qualitatively different on the noise intensity for the subcritical and supercritical case.

Abstract: We report on the observation of coherence resonance for a semiconductor laser with short optical feedback close to Hopf bifurcations. Noise-induced self-pulsations are documented by distinct Lorentzian-like features in the power spectrum. The character of coherence is critically related to the type of the bifurcation. In the supercritical case, spectral width and height of the peak are monotonic functions of the noise level. In contrast, for the subcritical bifurcation, the width exhibits a minimum, translating into resonance behavior of the correlation time in the pulsation transients. A theoretical analysis based on the generic model of a self-sustained oscillator demonstrates that these observations are of general nature and are related to the fact that the damping depends qualitatively different on the noise intensity for the subcritical and supercritical case.

137 citations

••

TL;DR: In this article, the authors consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability.

Abstract: We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

50 citations

••

TL;DR: In this paper, a comparative analysis of linear and nonlinear piezoelectric energy harvesting from random impulsive excitations modelled by white Poisson noise was conducted, and it was shown that the harvester performance depends on both nonlinearity and properties of ambient energy.

Abstract: Design of an efficient energy harvester is now feasible as technology develops and a viable approach to solve this
need is to exploit the concept and application of a nonlinear design. In this letter, we conducted a comparative
analysis of linear and nonlinear piezoelectric energy harvesting from random impulsive excitations modelled by
white Poisson noise. It is shown that the harvester performance depends on both nonlinearity and properties
of ambient energy, and nonlinearity should be optimized for a given type of ambient vibration in order to
achieve efficient harvesting.

40 citations

••

TL;DR: The energy-optimal entraining of the dynamics of a periodically driven oscillator, moving it from a chaotic attractor to a coexisting stable limit cycle, is investigated via analysis of fluctuational transitions between the two states.

Abstract: The energy-optimal entraining of the dynamics of a periodically driven oscillator, moving it from a chaotic attractor to a coexisting stable limit cycle, is investigated via analysis of fluctuational transitions between the two states. The deterministic optimal control function is identified with the corresponding optimal fluctuational force, which is found by numerical and analog simulations.

39 citations

••

TL;DR: In this article, the synchronization of two symmetrically coupled Lorenz systems, each of them considered a chaotic bistable system, is investigated numerically, and a phenomenon of synchronization of the mean frequencies of switchings in coupled chaotic Bistable systems is found.

Abstract: Synchronization of two symmetrically coupled Lorenz systems, each of them considered a chaotic bistable system, is investigated numerically. A phenomenon of synchronization of the mean frequencies of switchings in coupled chaotic bistable systems is found. Bifurcations taking place in the system are analyzed. It is shown that there is the region on the ``coupling-detuning'' parameter plane where the mean frequencies of switchings coincide with a certain accuracy.

39 citations

##### Cited by

More filters

••

TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.

Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

••

[...]

TL;DR: In this paper, a considerable collection of totally free of expense Book for people from every single stroll of life has been gathered to gather a sizable library of preferred cost-free as well as paid files.

Abstract: Our goal is always to offer you an assortment of cost-free ebooks too as aid resolve your troubles. We have got a considerable collection of totally free of expense Book for people from every single stroll of life. We have got tried our finest to gather a sizable library of preferred cost-free as well as paid files. Whatever our proffesion, the art of electronics can be excellent resource for reading. Find the existing reports of word, txt, kindle, ppt, zip, pdf, as well as rar in this site. You can definitely check out online or download this book by below. Currently, never miss it. This is really going to save you time and your money in something should think about. If you're seeking then search around for online. Without a doubt there are several these available and a lot of them have the freedom. However no doubt you receive what you spend on. An alternate way to get ideas would be to check another the art of electronics. GO TO THE TECHNICAL WRITING FOR AN EXPANDED TYPE OF THIS THE ART OF ELECTRONICS, ALONG WITH A CORRECTLY FORMATTED VERSION OF THE INSTANCE MANUAL PAGE ABOVE.

1,146 citations

••

[...]

TL;DR: The last volume of the Progress in Optics series as discussed by the authors contains seven chapters on widely diverging topics, written by well-known authorities in their fields, including laser selective photophysics and photochemistry, laser phase profile generation, laser beamforming, and laser laser light emission from high-current surface spark discharges.

Abstract: Have you ever felt that the very title, Progress in Optics, conjured an image in your mind? Don’t you see a row of handsomely printed books, bearing the editorial stamp of one of the most brilliant members of the optics community, and chronicling the field of optics since the invention of the laser? If so, you are certain to move the bookend to make room for Volume 16, the latest of this series. It contains seven chapters on widely diverging topics, written by well-known authorities in their fields. These are: 1) Laser Selective Photophysics and Photochemistry by V. S. Letokhov, 2) Recent Advances in Phase Profiles (sic) Generation by J. J. Clair and C. I. Abitbol, 3 ) Computer-Generated Holograms: Techniques and Applications by W.-H. Lee, 4) Speckle Interferometry by A. E. Ennos, 5 ) Deformation Invariant, Space-Variant Optical Pattern Recognition by D. Casasent and D. Psaltis, 6) Light Emission from High-Current Surface-Spark Discharges by R. E. Beverly, and 7) Semiclassical Radiation Theory within a QuantumMechanical Framework by I. R. Senitzkt. The breadth of topic matter spanned by these chapters makes it impossible, for this reviewer at least, to pass judgement on the comprehensiveness, relevance, and completeness of every chapter. With an editorial board as prominent as that of Progress in Optics, however, it seems hardly likely that such comments should be necessary. It should certainly be possible to take the authority of each author as credible. The only remaining judgment to be made on these chapters is their readability. In short, what are they like to read? The first sentence of the first chapter greets the eye with an obvious typographical error: “The creation of coherent laser light source, that have tunable radiation, opened the . . . .” Two pages later we find: “When two types of atoms or molecules of different isotopic composition ( A and B ) have even one spectral line that does not overlap with others, it is pos-

1,071 citations

•

01 Dec 2010

TL;DR: In this article, a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field is presented. But the focus is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion and the dynamical and statistical properties of the dynamics when it is chaotic.

Abstract: This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The book is intended as a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field. It emphasizes both methods of calculation and results. It is accessible to physicists and engineers without training in modern mathematics. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects. It can be used as a graduate text for a two semester course covering both Hamiltonian and dissipative dynamics.

996 citations

••

TL;DR: Although a variety of univariate statistics are included, certain topics that are important in medical research are not, and there is little or no discussion of multiple regression, life-table techniques, or pooling of studies.

Abstract: This book attempts to achieve a difficult goal: to teach statistics to the novice so as to impart a liking and understanding of statistics. The book is geared toward a medical audience, since most examples are from the medical literature. The structure of the book consists of the following elements in each chapter: a small number of statistical rules of thumb, followed by a nontechnical explanation, a demonstration of how to work through the mechanics of doing the statistical test in question, a summary, and sample problems to be solved by the reader. (The answers, with explanations, are provided in an appendix.) Although a variety of univariate statistics are included, certain topics that are important in medical research are not. For example, there is little or no discussion of multiple regression, life-table techniques, or pooling of studies. These omissions, especially of multiple regression, are unfortunate. The Primer was derived from

898 citations