scispace - formally typeset
Search or ask a question

Showing papers in "Physical Review E in 2013"


Journal ArticleDOI
TL;DR: The pseudolikelihood method, applied to 21-state Potts models describing the statistical properties of families of evolutionarily related proteins, significantly outperforms existing approaches to the direct-coupling analysis, the latter being based on standard mean-field techniques.
Abstract: Spatially proximate amino acids in a protein tend to coevolve. A protein's three-dimensional (3D) structure hence leaves an echo of correlations in the evolutionary record. Reverse engineering 3D structures from such correlations is an open problem in structural biology, pursued with increasing vigor as more and more protein sequences continue to fill the data banks. Within this task lies a statistical inference problem, rooted in the following: correlation between two sites in a protein sequence can arise from firsthand interaction but can also be network-propagated via intermediate sites; observed correlation is not enough to guarantee proximity. To separate direct from indirect interactions is an instance of the general problem of inverse statistical mechanics, where the task is to learn model parameters (fields, couplings) from observables (magnetizations, correlations, samples) in large systems. In the context of protein sequences, the approach has been referred to as direct-coupling analysis. Here we show that the pseudolikelihood method, applied to 21-state Potts models describing the statistical properties of families of evolutionarily related proteins, significantly outperforms existing approaches to the direct-coupling analysis, the latter being based on standard mean-field techniques. This improved performance also relies on a modified score for the coupling strength. The results are verified using known crystal structures of specific sequence instances of various protein families. Code implementing the new method can be found at http://plmdca.csc.kth.se/.

637 citations


Journal ArticleDOI
TL;DR: The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation and it is found that a lower liquid viscosity can be gained in the pseudopotentials model by increasing the kinematic viscosities ratio between the vapor and liquid phases.
Abstract: Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/√a. Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.

357 citations


Journal ArticleDOI
TL;DR: It is shown that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are identical, and hence there is no difference between the modularity- and inference-based community detection methods, or between either and graph partitioning.
Abstract: We consider three distinct and well-studied problems concerning network structure: community detection by modularity maximization, community detection by statistical inference, and normalized-cut graph partitioning. Each of these problems can be tackled using spectral algorithms that make use of the eigenvectors of matrix representations of the network. We show that with certain choices of the free parameters appearing in these spectral algorithms the algorithms for all three problems are, in fact, identical, and hence that, at least within the spectral approximations used here, there is no difference between the modularity- and inference-based community detection methods, or between either and graph partitioning.

344 citations


Journal ArticleDOI
TL;DR: A statistical mechanics framework is introduced to describe multiplex ensembles in which the existence of a link in one layer is correlated with theexistence of a links in another layer, which implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different layers.
Abstract: There is growing interest in multiplex networks where individual nodes take part in several layers of networks simultaneously. This is the case, for example, in social networks where each individual node has different kinds of social ties or transportation systems where each location is connected to another location by different types of transport. Many of these multiplexes are characterized by a significant overlap of the links in different layers. In this paper we introduce a statistical mechanics framework to describe multiplex ensembles. A multiplex is a system formed by $N$ nodes and $M$ layers of interactions where each node belongs to the $M$ layers at the same time. Each layer $\ensuremath{\alpha}$ is formed by a network ${G}^{\ensuremath{\alpha}}$. Here we introduce the concept of correlated multiplex ensembles in which the existence of a link in one layer is correlated with the existence of a link in another layer. This implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different layers. Moreover, we characterize microcanonical and canonical multiplex ensembles satisfying respectively hard and soft constraints and we discuss how to construct multiplexes in these ensembles. Finally, we provide the expression for the entropy of these ensembles that can be useful to address different inference problems involving multiplexes.

337 citations


Journal ArticleDOI
TL;DR: This paper proposes a simple method to address PE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor, by assigning weights for each extracted vector when computing the relative frequencies associated with every motif.
Abstract: Permutation entropy (PE) has been recently suggested as a novel measure to characterize the complexity of nonlinear time series. In this paper, we propose a simple method to address some of PE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. The method relies on the fact that patterns may be too disparate in amplitudes and variances and proceeds by assigning weights for each extracted vector when computing the relative frequencies associated with every motif. Simulations were conducted over synthetic and real data for a weighting scheme inspired by the variance of each pattern. Results show better robustness and stability in the presence of higher levels of noise, in addition to a distinctive ability to extract complexity information from data with spiky features or having abrupt changes in magnitude.

335 citations


Journal ArticleDOI
TL;DR: It is shown that entangling unitary controls extract in general more work than independent ones, and in the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.
Abstract: Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy. Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.

321 citations


Journal ArticleDOI
TL;DR: Numerical results demonstrate that accurate solutions in both continuum and rarefied flow regimes can be obtained from the current DUGKS.
Abstract: Based on the Boltzmann-BGK (Bhatnagar-Gross-Krook) equation, in this paper a discrete unified gas kinetic scheme (DUGKS) is developed for low-speed isothermal flows. The DUGKS is a finite-volume scheme with the discretization of particle velocity space. After the introduction of two auxiliary distribution functions with the inclusion of collision effect, the DUGKS becomes a fully explicit scheme for the update of distribution function. Furthermore, the scheme is an asymptotic preserving method, where the time step is only determined by the Courant-Friedricks-Lewy condition in the continuum limit. Numerical results demonstrate that accurate solutions in both continuum and rarefied flow regimes can be obtained from the current DUGKS. The comparison between the DUGKS and the well-defined lattice Boltzmann equation method (D2Q9) is presented as well.

316 citations


Journal ArticleDOI
TL;DR: A mechanism for generating higher-order rogue waves (HRWs) of the nonlinear Schrödinger (NLS) equation: the progressive fusion and fission of n degenerate breathers associated with a critical eigenvalue λ(0) creates an order-n HRW.
Abstract: We introduce a mechanism for generating higher-order rogue waves (HRWs) of the nonlinear Schrodinger (NLS) equation: the progressive fusion and fission of n degenerate breathers associated with a critical eigenvalue λ(0) creates an order-n HRW. By adjusting the relative phase of the breathers in the interacting area, it is possible to obtain different types of HRWs. The value λ(0) is a zero point of an eigenfunction of the Lax pair of the NLS equation and it corresponds to the limit of the period of the breather tending to infinity. By employing this mechanism we prove two conjectures regarding the total number of peaks, as well as a decomposition rule in the circular pattern of an order-n HRW.

290 citations


Journal ArticleDOI
TL;DR: A contact-based information spreading model is proposed, and it is shown that the critical point of the multiplex system associated with the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue.
Abstract: We develop a theoretical framework for the study of epidemiclike social contagion in large scale social systems We consider the most general setting in which different communication platforms or categories form multiplex networks Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated with the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue The framework is applied to a number of different situations, including a real multiplex system Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is inaccurate

245 citations


Journal ArticleDOI
TL;DR: Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability.
Abstract: A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.

227 citations


Journal ArticleDOI
TL;DR: This work derives an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them, and performs an asymptotic analysis that allow for analytical expressions for the full spectrum of eigenvalues.
Abstract: omez et al. [Phys. Rev. Lett. 110, 028701 (2013)], some of the authors proposed a framework for the study of diffusion processes in such networks. Here, we extend the previous framework to deal with general configurations in several layers of networks and analyze the behavior of the spectrum of the Laplacian of the full multiplex. We derive an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them. Capitalizing on this decoupling we perform an asymptotic analysis that allow us to derive analytical expressions for the full spectrum of eigenvalues. This spectrum is used to gain insight into physical phenomena on top of multiplex, specifically, diffusion processes and synchronizability.

Journal ArticleDOI
TL;DR: Predictions of transport through micro-CT images of porous media that include the analysis of correlation structure, velocity, and the dynamics of the evolving plume are presented.
Abstract: We present predictions of transport through micro-CT images of porous media that include the analysis of correlation structure, velocity, and the dynamics of the evolving plume. We simulate solute transport through millimeter-sized three-dimensional images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The Navier-Stokes equations are solved to compute the flow field and a streamline simulation approach is used to move particles by advection, while the random walk method is employed to represent diffusion. We show how the computed propagators (concentration as a function of displacement) for the beadpack, sandstone, and carbonate depend on the width of the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behavior, where the propagators rapidly become Gaussian in shape; the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed; in the carbonate with the widest velocity distribution, the stagnant concentration peak is persistent, with a slower emergence of a smaller secondary mobile peak, characteristic of highly anomalous behavior. This defines different types of transport in the three media and quantifies the effect of pore structure on transport. The propagators obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments by Scheven, Verganelakis, Harris, Johns, and Gladden, Phys. Fluids 17, 117107 (2005).

Journal ArticleDOI
TL;DR: This paper analyzes the time course of cooperation evolution under different evolution rules and shows that expansion of the perfect C cluster is closely related to the cluster coefficient of interaction topology.
Abstract: Up to now, there have been a great number of studies that demonstrate the effect of spatial topology on the promotion of cooperation dynamics (namely, the so-called "spatial reciprocity"). However, most researchers probably attribute it to the positive assortment of strategies supported by spatial arrangement. In this paper, we analyze the time course of cooperation evolution under different evolution rules. Interestingly, a typical evolution process can be divided into two evident periods: the enduring (END) period and the expanding (EXP) period where the former features that cooperators try to endure defectors' invasion and the latter shows that perfect C clusters fast expand their area. We find that the final cooperation level relies on two key factors: the formation of the perfect C cluster at the end of the END period and the expanding fashion of the perfect C cluster during the EXP period. For deterministic rule, the smooth expansion of C cluster boundaries enables cooperators to reach a dominant state, whereas, the rough boundaries for stochastic rule cannot provide a sufficient beneficial environment for the evolution of cooperation. Moreover, we show that expansion of the perfect C cluster is closely related to the cluster coefficient of interaction topology. To some extent, we present a viable method for understanding the spatial reciprocity mechanism in nature and hope that it will inspire further studies to resolve social dilemmas.

Journal ArticleDOI
TL;DR: The so-called ergodic mutual information is considered, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.
Abstract: We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.

Journal ArticleDOI
TL;DR: In this paper, large-scale computer simulations of the hard disk system at high densities in the region of the melting transition are presented, where the authors reproduce the equation of state, previously obtained using the event-chain Monte Carlo algorithm, with a massively parallel implementation of the local Monte Carlo method and with event-driven molecular dynamics.
Abstract: We report large-scale computer simulations of the hard-disk system at high densities in the region of the melting transition. Our simulations reproduce the equation of state, previously obtained using the event-chain Monte Carlo algorithm, with a massively parallel implementation of the local Monte Carlo method and with event-driven molecular dynamics. We analyze the relative performance of these simulation methods to sample configuration space and approach equilibrium. Our results confirm the first-order nature of the melting phase transition in hard disks. Phase coexistence is visualized for individual configurations via the orientational order parameter field. The analysis of positional order confirms the existence of the hexatic phase.

Journal ArticleDOI
TL;DR: It is shown that the thermodynamic limit assumption for the original radiation model significantly underestimates the commuting flows for large cities, and the parameter-free radiation model gives competitive results, especially for large scales.
Abstract: We test the recently introduced radiation model against the gravity model for the system composed of England and Wales, both for commuting patterns and for public transportation flows. The analysis is performed both at macroscopic scales, i.e., at the national scale, and at microscopic scales, i.e., at the city level. It is shown that the thermodynamic limit assumption for the original radiation model significantly underestimates the commuting flows for large cities. We then generalize the radiation model, introducing the correct normalization factor for finite systems. We show that even if the gravity model has a better overall performance the parameter-free radiation model gives competitive results, especially for large scales.

Journal ArticleDOI
TL;DR: A targeted attack probability function that is dependent upon node degree is introduced and the robustness of two types of NON under targeted attack is studied, showing how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases.
Abstract: The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Renyi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Renyi networks. For any tree of n fully interdependent Erdős-Renyi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Renyi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Renyi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical percolation theory of a single network under targeted attack.

Journal ArticleDOI
TL;DR: A new formalism for redundant information is introduced and it is proved that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that is proposed to be necessary to capture redundancy.
Abstract: We define a measure of redundant information based on projections in the space of probability distributions. Redundant information between random variables is information that is shared between those variables. But, in contrast to mutual information, redundant information denotes information that is shared about the outcome of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behavior of this new measure for several examples, compare it to previous measures, and apply it to the decomposition of transfer entropy.

Journal ArticleDOI
TL;DR: It is shown that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.
Abstract: From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.

Journal ArticleDOI
TL;DR: This work analytically derives λ(1)(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors.
Abstract: Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/?1(A+?B), where the infection rate is ? within each of the two individual networks and ?? in the interconnected links between the two networks and ?1(A+?B) is the largest eigenvalue of the matrix A+?B. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive ?1(A+?B) using a perturbation approximation for small and large ?, the lower and upper bound for any ? as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for ?1(A+?B) using numerical simulations, and determine how component network features affect ?1(A+?B). We note that, given two isolated networks G1 and G2 with principal eigenvectors x and y, respectively, ?1(A+?B) tends to be higher when nodes i and j with a higher eigenvector component product xiyj are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.

Journal ArticleDOI
TL;DR: It is demonstrated that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance, independent of the details of the system and the equilibrium temperatures of the external baths.
Abstract: An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by $3/4$ of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

Journal ArticleDOI
TL;DR: An explicit, unbiased, and practically optimal covariance-based estimator that is regression-free and far superior to commonly used methods based on measured mean squared displacements, and outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE).
Abstract: What is the best way to determine the diffusion coefficient from the trajectory of a single particle? This work points out that it is not the mean square deviation of values at different times, since these values are severely correlated. The authors introduce, for this purpose, an unbiased estimator that operates at the information limit.

Journal ArticleDOI
TL;DR: The results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition.
Abstract: Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition.

Journal ArticleDOI
TL;DR: A kinetic model is developed for the system's steady-state dynamics whose solution captures the main features of the phase behavior and the varied kinetics of phase separation, which range from the familiar nucleation and growth of clusters to the complex coarsening of active particle gels.
Abstract: Motivated by recent experiments, we study a system of self-propelled colloids that experience short-range attractive interactions and are confined to a surface. Using simulations we find that the phase behavior for such a system is reentrant as a function of activity: phase-separated states exist in both the low- and high-activity regimes, with a homogeneous active fluid in between. To understand the physical origins of reentrance, we develop a kinetic model for the system's steady-state dynamics whose solution captures the main features of the phase behavior. We also describe the varied kinetics of phase separation, which range from the familiar nucleation and growth of clusters to the complex coarsening of active particle gels.

Journal ArticleDOI
TL;DR: Using the Darboux transformation, the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrödinger equation with several higher- order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber is demonstrated.
Abstract: In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrodinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations in classical Heisenberg spin chain. Such solutions have a parameter γ(1), denoting the strength of the higher-order effects. From the numerical plots of the rational solutions, the compression effects of the breather and rogue waves produced by γ(1) are discussed in detail.

Journal ArticleDOI
TL;DR: It is found that pore drainage events are cooperative, meaning that capillary pressure differences which extend over multiple pores directly affect fluid topology and menisci dynamics and suggests that not only viscous forces but also capillarity acts in a nonlocal way.
Abstract: Drainage is typically understood as a process where the pore space is invaded by a nonwetting phase pore-by-pore, the controlling parameters of which are represented by capillary number and mobility ratio. However, what is less understood and where experimental data are lacking is direct knowledge of the dynamics of pore drainage and the associated intrinsic time scales since the rate dependencies often observed with displacement processes are potentially dependent on these time scales. Herein, we study pore drainage events with a high speed camera in a micromodel system and analyze the dependency of interfacial velocity on bulk flow rate and spatial fluid configurations. We find that pore drainage events are cooperative, meaning that capillary pressure differences which extend over multiple pores directly affect fluid topology and menisci dynamics. Results suggest that not only viscous forces but also capillarity acts in a nonlocal way. Lastly, the existence of a pore morphological parameter where pore drainage transitions from capillary to inertial and/or viscous dominated is discussed followed by a discussion on capillary dispersion and time scale dependencies. We show that the displacement front is disperse when volumetric flow rate is less than the intrinsic time scale for a pore drainage event and becomes sharp when the flow rate is greater than the intrinsic time scale (i.e., overruns the pore drainage event), which clearly shows how pore-scale parameters influence macroscale flow behavior.

Journal ArticleDOI
TL;DR: This work uses supersymmetry, the color-flavor transformation, and the saddle-point approximation to calculate the exact expression for the lowest and asymptotic expressions in the Ericson regime for all higher correlation functions of the scattering matrix.
Abstract: For chaotic scattering on quantum graphs, the semiclassical approximation is exact. We use this fact and employ supersymmetry, the color-flavor transformation, and the saddle-point approximation to calculate the exact expression for the lowest and asymptotic expressions in the Ericson regime for all higher correlation functions of the scattering matrix. Our results agree with those available from the random-matrix approach to chaotic scattering. We conjecture that our results hold universally for quantum-chaotic scattering.

Journal ArticleDOI
TL;DR: A framework for ES to be observed in a general complex network, where a positive correlation between coupling strengths of the oscillators and the absolute of their natural frequencies is assumed and the previous studies are included as specific cases.
Abstract: Explosive synchronization (ES) has recently attracted much attention, where its two necessary conditions are found to be a scale-free network topology and a positive correlation between the natural frequencies of the oscillators and their degrees. Here we present a framework for ES to be observed in a general complex network, where a positive correlation between coupling strengths of the oscillators and the absolute of their natural frequencies is assumed and the previous studies are included as specific cases. In the framework, the previous two necessary conditions are replaced by another one, thus fundamentally deepening the understanding of the microscopic mechanism toward synchronization. A rigorous analytical treatment by a mean field is provided to explain the mechanism of ES in this alternate framework.

Journal ArticleDOI
TL;DR: A minimal model of a heat machine that can play a similar role in quantum regimes is proposed and analyzed and the conditions for finite-time optimal performance for several variants of the model are studied.
Abstract: In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

Journal ArticleDOI
TL;DR: A multi-rogue-wave solution in a three-component coupled nonlinear Schrödinger equation is constructed that exhibits a structure like a four-petaled flower in temporal-spatial distribution, in contrast to the eye-shaped structure in one-component or two-component systems.
Abstract: We investigate rogue-wave solutions in a three-component coupled nonlinear Schrodinger equation. With certain requirements on the backgrounds of components, we construct a multi-rogue-wave solution that exhibits a structure like a four-petaled flower in temporal-spatial distribution, in contrast to the eye-shaped structure in one-component or two-component systems. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers, and superfluids.