scispace - formally typeset
Search or ask a question
Author

J.C. Vardaxoglou

Other affiliations: University of Kent
Bio: J.C. Vardaxoglou is an academic researcher from Loughborough University. The author has contributed to research in topics: Antenna (radio) & Microstrip antenna. The author has an hindex of 33, co-authored 249 publications receiving 5288 citations. Previous affiliations of J.C. Vardaxoglou include University of Kent.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines, and the bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated.
Abstract: Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.

907 citations

Journal ArticleDOI
01 Dec 2001
TL;DR: In this paper, a high gain planar antenna with an optimized partially reflecting surface (PRS) placed in front of a waveguide aperture in a ground plane was investigated, where the antenna performance was initially related to the reflection characteristics of the PRS array following an approximate analysis.
Abstract: A high gain planar antenna has been investigated, using an optimised partially reflecting surface (PRS) placed in front of a waveguide aperture in a ground plane. The antenna performance is initially related to the reflection characteristics of the PRS array following an approximate analysis. The array geometry is optimised using an analytical formula. The optimisation results are verified using a full wave model taking into account the edge effects. The array size for maximum antenna efficiency has also been investigated.

611 citations

Journal ArticleDOI
TL;DR: In this paper, a wideband coplanar waveguide was used to feed the balanced printed dipole antenna, where two silicon photo switches were placed on small gaps in both dipole arms equidistant from the center feed.
Abstract: A design for an optically reconfigurable printed dipole antenna is presented. A wideband coplanar waveguide (CPW) to coplanar stripline (CPS) transition is used to feed the balanced printed dipole. Two silicon photo switches are placed on small gaps in both dipole arms equidistant from the centre feed. Light from two infrared laser diodes channelled through fiber optic cables is applied to the switches. With the gaps in the dipole bridged, the antenna resonates at a lower frequency. Measured return loss results that compare well to the simulated values are also presented, showing a frequency shift of nearly 40%. The change in bore-sight gain along with radiation patterns are also presented. Activating each switch individually results in a near 50/spl deg/ shift in beam nulls.

323 citations

Book
01 Jan 1997
TL;DR: In this paper, the authors draw together the multifaceted work that has been done on frequency selective surfaces and provide a modern overview of the underlying theory and mathematics, and present an overview of some of the most relevant works.
Abstract: This book draws together the multifaceted work that has been done on frequency selective surfaces and provides a modern overview of the underlying theory and mathematics.

297 citations

Journal ArticleDOI
TL;DR: In this article, the spectral properties of planar periodic metallic arrays printed on grounded dielectric substrate are investigated and the currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces.
Abstract: The artificial magnetic conductor (AMC) and electromagnetic band gap (EBG) characteristics of planar periodic metallic arrays printed on grounded dielectric substrate are investigated. The currents induced on the arrays are presented for the first time and their study reveals two distinct resonance phenomena associated with these surfaces. A new technique is presented to tailor the spectral position of the AMC operation and the EBG. Square patch arrays with fixed element size and variable periodicities are employed as working examples to demonstrate the dependence of the spectral AMC and EBG characteristics on array parameters. It is revealed that as the array periodicity is increased, the AMC frequency is increased, while the EBG frequency is reduced. This is shown to occur due to the different nature of the resonance phenomena and the associated underlying physical mechanisms that produce the two effects. The effect of substrate thickness is also investigated. Full wave method of moments (MoM) has been employed for the derivation of the reflection characteristics, the currents and the dispersion relations. A uniplanar array with simultaneous AMC and EBG operation is demonstrated theoretically and experimentally.

246 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics and applications of planar metamaterials, often called metasurfaces, which are composed of optically thin and densely packed planar arrays of resonant or nearly resonant subwavelength elements, are reviewed.

1,047 citations

Journal ArticleDOI
23 Mar 2012
TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.
Abstract: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs). An LWA uses a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure. Such antennas may be uniform, quasi-uniform, or periodic. After reviewing the basic physics and operating principles, a summary of some recent advances for these types of structures is given. Recent advances include structures that can scan to endfire, structures that can scan through broadside, structures that are conformal to surfaces, and structures that incorporate power recycling or include active elements. Some of these novel structures are inspired by recent advances in the metamaterials area.

988 citations

Journal ArticleDOI
TL;DR: In this article, a ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines, and the bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated.
Abstract: Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.

907 citations

Journal ArticleDOI
20 Jan 2017
TL;DR: In this paper, a classification of metasurfaces based on their different phase mechanisms and profiles and a comparison between plasmonic and dielectric surfaces is presented. And the authors place particular emphasis on the recent developments on electric and magnetic field control of light with Dielectric nanostructures and highlight the physical mechanisms and designs required for efficient all-dielectric metamaterials.
Abstract: This article reviews recent progress leading to the realization of planar optical components made of a single layer of phase shifting nanostructures. After introducing the principles of planar optics and discussing earlier works on subwavelength diffractive optics, we introduce a classification of metasurfaces based on their different phase mechanisms and profiles and a comparison between plasmonic and dielectric metasurfaces. We place particular emphasis on the recent developments on electric and magnetic field control of light with dielectric nanostructures and highlight the physical mechanisms and designs required for efficient all-dielectric metasurfaces. Practical devices of general interest such as metalenses, beam deflectors, holograms, and polarizing interfaces are discussed, including high-performance metalenses at visible wavelengths. Successful strategies to achieve achromatic response at selected wavelengths and near unity transmission/reflection efficiency are discussed. Dielectric metasurfaces and dispersion management at interfaces open up technology opportunities for applications including wavefront control, lightweight imaging systems, displays, electronic consumer products, and conformable and wearable optics.

866 citations