scispace - formally typeset
Search or ask a question

Showing papers by "J. Lang published in 2002"


Journal ArticleDOI
TL;DR: In this paper, a generalized collisional-radiative model was proposed to describe the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies.
Abstract: Trends and focii of interest in atomic modelling and data are identified in connection with recent observations and experiments in fusion and astrophysics. In the fusion domain, spectral observations are included of core, beam penetrated and divertor plasma. The helium beam experiments at JET and the studies with very heavy species at ASDEX and JET are noted. In the astrophysics domain, illustrations are given from the SOHO and CHANDRA spacecraft which span from the solar upper atmosphere, through soft x-rays from comets to supernovae remnants. It is shown that non-Maxwellian, dynamic and possibly optically thick regimes must be considered. The generalized collisional-radiative model properly describes the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies. The tuning of this method to routine analysis of the spectral observations is described. A forward look is taken as to how such atomic modelling, and the atomic data which underpin it, ought to evolve to deal with the extended conditions and novel environments of the illustrations. It is noted that atomic physics influences most aspects of fusion and astrophysical plasma behaviour but the effectiveness of analysis depends on the quality of the bi-directional pathway from fundamental data production through atomic/plasma model development to the confrontation with experiment. The principal atomic data capability at JET, and other fusion and astrophysical laboratories, is supplied via the Atomic Data and Analysis Structure (ADAS) Project. The close ties between the various experiments and ADAS have helped in this path of communication.

63 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the validity and limitations of the differential emission measure (DEM) method used for analysing solar EUV spectra, and showed that a spurious multiple peak in the DEM distribution between and 6.7, where is the electron temperature, may derive from an inaccurate treatment of the population densities of the excited levels and ionisation fractions or from using an integral inversion technique with arbitrary smoothing.
Abstract: The differential emission measure (DEM) of a solar active region is derived from SERTS-89 rocket data between 170 and 450 i.. (Thomas and Neupert 1994). The integral inversion to infer the DEM distribution from spectral line intensities is performed by the data adaptive smoothing approach (Thompson 1990, 1991). Our analysis takes into account the density dependence of both ionisation fractions and excitation coefficients according to the collisional-radiative theory as implemented in ADAS, the Atomic Data and Analysis Structure (McWhirter and Summers 1984; Summers 1994; Summers 2001). Our strategy aims at checking, using observational data, the validity and limitations of the DEM method used for analysing solar EUV spectra. We investigate what information it is possible to extract, within defined limitations, and how the method can assist in a number of cases, e.g. abundance determination, spectral line identification, intensity predictions, and validation of atomic cross-sections. Using the above data and theory, it is shown that a spurious multiple peak in the DEM distribution between and 6.7, where is the electron temperature, may derive from an inaccurate treatment of the population densities of the excited levels and ionisation fractions or from using an integral inversion technique with arbitrary smoothing. Therefore, complex DEM structures, like those proposed for solar and stellar coronae by several authors, must be considered with caution. We address also the issue of systematic differences between iso-electronic sequences and show that these cannot be unambiguously detected in the coronal lines observed by SERTS. Our results indicate that a substantial improvement is required in the atomic modelling of the complex element Fe. The elemental abundance ratio Si/Ne is found to be close to its photospheric value. The same result may be true for the Fe/Ne abundance, but this latter result is uncertain because of the problems found with Fe.

32 citations