scispace - formally typeset
Search or ask a question
JournalISSN: 1559-128X

Applied Optics 

Optica Publishing Group
About: Applied Optics is an academic journal published by Optica Publishing Group. The journal publishes majorly in the area(s): Laser & Interferometry. It has an ISSN identifier of 1559-128X. Over the lifetime, 53355 publications have been published receiving 1412070 citations. The journal is also known as: AO.


Papers
More filters
Journal ArticleDOI
TL;DR: Iterative algorithms for phase retrieval from intensity data are compared to gradient search methods and it is shown that both the error-reduction algorithm for the problem of a single intensity measurement and the Gerchberg-Saxton algorithm forThe problem of two intensity measurements converge.
Abstract: Iterative algorithms for phase retrieval from intensity data are compared to gradient search methods. Both the problem of phase retrieval from two intensity measurements (in electron microscopy or wave front sensing) and the problem of phase retrieval from a single intensity measurement plus a non-negativity constraint (in astronomy) are considered, with emphasis on the latter. It is shown that both the error-reduction algorithm for the problem of a single intensity measurement and the Gerchberg-Saxton algorithm for the problem of two intensity measurements converge. The error-reduction algorithm is also shown to be closely related to the steepest-descent method. Other algorithms, including the input-output algorithm and the conjugate-gradient method, are shown to converge in practice much faster than the error-reduction algorithm. Examples are shown.

5,210 citations

Journal ArticleDOI
TL;DR: Extinction coefficients k(lambda) for water at 25 degrees C were determined through a broad spectral region by manually smoothing a point by point graph of k( lambda) vs wavelength lambda that was plotted for data obtained from a review of the scientific literature on the optical constants of water.
Abstract: Extinction coefficients k(lambda) for water at 25 degrees C were determined through a broad spectral region by manually smoothing a point by point graph of k(lambda) vs wavelength lambda that was plotted for data obtained from a review of the scientific literature on the optical constants of water. Absorption bands representing k(lambda) were postulated where data were not available in the vacuum uv and soft x-ray regions. A subtractive Kramers-Kronig analysis of the combined postulated and smoothed portions of the k(lambda) spectrum provided the index of refraction n(lambda) for the spectral region 200 nm

4,094 citations

Journal ArticleDOI
TL;DR: The reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
Abstract: We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.

3,629 citations

Journal ArticleDOI
TL;DR: An advanced, thoroughly documented, and quite general purpose discrete ordinate algorithm for time-independent transfer calculations in vertically inhomogeneous, nonisothermal, plane-parallel media for Atmospheric applications ranging from the UV to the radar region of the electromagnetic spectrum is summarized.
Abstract: The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.

3,257 citations

Journal ArticleDOI
H. Kogelnik1, Tingye Li1
TL;DR: This paper is a review of the theory-of laser beams and resonators and emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.
Abstract: This paper is a review of the theory-of laser beams and resonators. It is meant to be tutorial in nature and useful in scope. No attempt is made to be exhaustive in the treatment. Rather, emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.

2,638 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202375
2022172
20211,435
20201,602
20191,426
20181,506