scispace - formally typeset
Search or ask a question

Showing papers by "Jacqueline K. Barton published in 2005"


Journal ArticleDOI
TL;DR: It is demonstrated that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation.
Abstract: MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S]2+ cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S]3+/2+ couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at ...

168 citations


Journal ArticleDOI
TL;DR: A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair.
Abstract: DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S]2+ cluster of MutY to [4Fe-4S]3+ and its decomposition product [3Fe-4S]1+. Flash/quench experiments monitored by EPR spectroscopy reveal spectra with g = 2.08, 2.06, and 2.02, characteristic of the oxidized clusters. Transient absorption spectra of poly(dGC) and [Ru(phen)2dppz]3+ (dppz = dipyridophenazine), generated in situ, show an absorption characteristic of the guanine radical that is depleted in the presence of MutY with formation instead of a long-lived species with an absorption at 405 nm; we attribute this absorption also to formation of the oxidized [4Fe-4S]3+ and [3Fe-4S]1+ clusters. In ruthenium-tethered DNA assemblies, oxidative damage to the 5′-G of a 5′-GG-3′ doublet is generated from a distance but this irreversible damage is inhibited by MutY and instead EPR experiments reveal cluster oxidation. With ruthenium-tethered assemblies containing duplex versus single-stranded regions, MutY oxidation is found to be mediated by the DNA duplex, with guanine radical as an intermediate oxidant; guanine radical formation facilitates MutY oxidation. A model is proposed for the redox activation of DNA repair proteins through DNA CT, with guanine radicals, the first product under oxidative stress, in oxidizing the DNA-bound repair proteins, providing the signal to stimulate DNA repair.

112 citations


Journal ArticleDOI
TL;DR: This sensitive detection methodology based upon DNA- mediated CT may have utility in diagnostic applications and implicates DNA-mediated CT as a possible damage detection mechanism for DNA repair enzymes.

103 citations


Journal ArticleDOI
TL;DR: Using intercalated, covalently bound daunomycin as a redox probe, ground state charge transport in DNA films with a perturbation in base pair stacking was examined and confirmed that the base pair stack is the pathway for DNA-mediated charge transfer.
Abstract: Using intercalated, covalently bound daunomycin as a redox probe, ground state charge transport in DNA films with a perturbation in base pair stacking was examined in comparison with breaks in the sugar−phosphate backbone. While the introduction of one or even two nicks in the sugar−phosphate backbone yields no detectable effect on electron transfer, a CA mismatch significantly attenuates the electron transfer yield. These results confirm that the base pair stack is the pathway for DNA-mediated charge transfer, not the sugar−phosphate backbone.

96 citations


Journal ArticleDOI
TL;DR: The entire sequence within the DNA assembly is seen to govern CPC oxidation, not simply the bases intervening between CPC and the tethered photooxidant, and the mechanistic model for DNA charge transport is distinguished from polaron models.
Abstract: Here we examine the photooxidation of two kinetically fast electron hole traps, N_4-cyclopropylcytosine (^(CP)C) and N_2-cyclopropylamine-guanosine (CPG), incorporated in DNA duplexes of various sequence using different photooxidants. DNA oxidation studies are carried out either with noncovalently bound [Ru(phen)(dppz)(bpy‘)]^(3+) (dppz = dipyridophenazine) and [Rh(phi)_2(bpy)]^(3+) (phi = phenanthrenequinone diimine) or with anthraquinone tethered to DNA. Because the cyclopropylamine-substituted bases decompose rapidly upon oxidation, their efficiency of decomposition provides a measure of relative hole localization. Consistent with a higher oxidation potential for ^(CP)C versus ^(CP)G in DNA, ^(CP)C decomposes with photooxidation by [Rh(phi)_2(bpy)]^(3+), while CPG undergoes ring-opening both with photoexcited [Rh(phi)_2(bpy)]^(3+) and with [Ru(phen)(dppz)(bpy‘)]^(3+). Anthraquinone-modified DNA assemblies of identical base composition but different base sequence are also probed. Single and double base substitutions within adenine tracts modulate ^(CP)C decomposition. In fact, the entire sequence within the DNA assembly is seen to govern ^(CP)C oxidation, not simply the bases intervening between ^(CP)C and the tethered photooxidant. These data are reconciled in the context of a mechanistic model of conformationally gated charge transport through delocalized DNA domains. Photooxidations of anthraquinone-modified DNA assemblies containing both ^(CP)C and ^(CP)G, but with varied distances separating the modified bases, point to a domain size of at least three bases. Our model for DNA charge transport is distinguished from polaron models. In our model, delocalized domains within the base pair stack form transiently based upon sequence-dependent DNA structure and dynamics. Given these results, DNA charge transport is indeed remarkably sensitive to DNA sequence and structure.

71 citations


Journal ArticleDOI
TL;DR: The exquisite sensitivity of DNA electrochemistry to perturbations in base pair stacking and the applicability of this chemistry to probe reactions of proteins with DNA are demonstrated.
Abstract: Cyclobutane pyrimidine dimers are the major DNA photoproducts produced upon exposure to UV radiation. If left unrepaired, these lesions can lead to replication errors, mutation, and cell death. Photolyase is a light-activated flavoenzyme that binds to pyrimidine dimers in DNA and repairs them in a reaction triggered by electron transfer from the photoexcited flavin cofactor to the dimer. Using gold electrodes modified with DNA duplexes containing a cyclobutane thymine dimer (T T), here we probe the electrochemistry of the flavin cofactor in Escherichia coli photolyase. Cyclic and square-wave voltammograms of photolyase deposited on these electrodes show a redox signal at 40 mV versus normal hydrogen electrode, consistent with electron transfer to and from the flavin in the DNA-bound protein. This signal is dramatically attenuated on surfaces where the π-stacking of the DNA bases is perturbed by the presence of an abasic site below the T T, an indication that the redox pathway is DNA-mediated. DNA repair can, moreover, be monitored electrically. Exposure of photolyase on T T-damaged DNA films to near-UV/blue light leads to changes in the flavin signal consistent with repair, as confirmed by parallel HPLC experiments. These results demonstrate the exquisite sensitivity of DNA electrochemistry to perturbations in base pair stacking and the applicability of this chemistry to probe reactions of proteins with DNA.

57 citations


Journal ArticleDOI
TL;DR: Several photoactive platinum alpha-diimine intercalators have been prepared to develop new probes of DNA oxidation and reduction chemistry, and may offer useful reactive tools to compare and contrast directly reductive and oxidative chemistry in double helical DNA.
Abstract: Several photoactive platinum R-diimine intercalators have been prepared to develop new probes of DNA oxidation and reduction chemistry. Five water-soluble bis(mes')Pt(II) complexes (mes') N,N,N,3,5-pentamethylaniline) with various aromatic α-diimine ligands (dppz= dipyridophenazine, np = naphtha[2,3-f][1,ω]phenanthroline, CN-np = naphtho[2,3-f][1,10]phenanthroline-9-carbonitrile, CN_2-np = naphtho[2,3-f][1,10]phenanthroline-9,14-dicarbonitrile, and bp = benzo-[f][1,10]phenanthroline) were synthesized. The complex [(np)Pt(mes')_2]Cl_2 was also characterized by X-ray crystallography, and the crystal structure shows that the ortho-methyl groups of the mes' ligands conveniently block substitution at the vacant sites of platinum without overlapping with the intercalating α-diimine ligand. The Pt(II) complexes were found to have excited-state oxidation and reduction potentials of -0.6 to -1.0 and 1.0 to 1.5 V versus NHE, respectively, making them potent photoreductants as well as photooxidants. Many of the complexes are found to promote the photooxidation of N^2-cyclopropyldeoxyguanosine (d^(Cp)G). Photoexcited [(dppz)Pt(mes')_2]^(2+) is found to be most efficient in this photooxidation, as well as in the photoreduction of N^4-cyclopropylcytidine (^(Cp)C); these modified nucleosides rapidly decompose in a ring-opening reaction upon oxidation or reduction. Photoexcited [(dppz)Pt(mes')_2]Cl_2, upon intercalation into the DNA π stack, is found, in addition, to promote reductive and oxidative damage within the DNA duplex, as is also probed using the kinetically fast electron and hole traps, ^(Cp)C and ^(Cp)G. These Pt complexes may therefore offer useful reactive tools to compare and contrast directly reductive and oxidative chemistry in double helical DNA.

53 citations


Journal ArticleDOI
TL;DR: It is shown that DNA-mediated charge transport (CT) can lead to the oxidation of thiols to form disulfide bonds in DNA, and one intervening mismatch near the thiolS promotes an increase in efficiency, which is attributed to increased base dynamics.
Abstract: Here, we show that DNA-mediated charge transport (CT) can lead to the oxidation of thiols to form disulfide bonds in DNA. DNA assemblies were prepared possessing anthraquinone (AQ) as a photooxidant spatially separated on the duplex from two SH groups incorporated into the DNA backbone. Upon AQ irradiation, HPLC analysis reveals DNA ligated through a disulfide. The reaction efficiency is seen to vary in assemblies containing intervening DNA mismatches, confirming that the reaction is DNA-mediated. Interestingly, one intervening mismatch near the thiols promotes an increase in efficiency, which we attribute to increased base dynamics. Hence, here, where the reaction is on the backbone rather than within the base stack, stacking perturbations do not necessarily lead to an inhibitory effect on DNA CT.

25 citations


Patent
07 Jun 2005
TL;DR: In this paper, the 3'-phosphate end at a nucleotide mismatch site is labeled with polynucleotide tails, which can function as primer binding sites for use in PCR in gene analyses.
Abstract: The present invention describes methods for directly labeling the 3’-phosphate end at a nucleotide mismatch site. Further, as internal 3’-phosphate termini on DNA duplexes are also associated generally with oxidative lesions, these methods provide a general strategy for labeling, and therefore, detecting the frequency of oxidative DNA lesions. The present invention also discloses labeling methods using terminal transferase or nontemplated DNA polymerization, where the use of either of these activities affords tagging a site, after removal of the 3’-phosphate, with polynucleotide tails. Such polynucleotide tails in turn can function as primer binding sites for use in PCR in gene analyses.

6 citations