scispace - formally typeset
Search or ask a question

Showing papers by "Jan O. Aasly published in 2003"


Journal ArticleDOI
TL;DR: The phenotypic variability of muscle caveolinopathies is extended by identification of a severe form of RMD associated with homozygous CAV3 mutations, similar to the findings in heterozygous RMD.
Abstract: Heterozygous missense mutations in the caveolin-3 gene (CAV3) cause different muscle disorders. Most patients with CAV3 alterations present with rippling muscle disease (RMD) characterized by signs of increased muscle irritability without muscle weakness. In some patients, CAV3 mutations underlie the progressive limb-girdle muscular dystrophy type 1C (LGMD1C). Here, we report two unrelated patients with novel homozygous mutations (L86P and A92T) in CAV3. Both presented with a more severe clinical phenotype than usually seen in RMD. Immunohistochemical and immunoblot analyses of muscle biopsies showed a strong reduction of caveolin-3 in both homozygous RMD patients similar to the findings in heterozygous RMD. Electron microscopy studies showed a nearly complete absence of caveolae in the sarcolemma in all RMD patients analyzed. Additional plasma membrane irregularities (small plasmalemmal discontinuities, subsarcolemmal vacuoles, abnormal papillary projections) were more pronounced in homozygous than in heterozygous RMD patients. A stronger activation of nitric oxide synthase was observed in both homozygous patients compared with heterozygous RMD. Like in LGMD1C, dysferlin immunoreactivity is reduced in RMD but more pronounced in homozygous as compared with heterozygous RMD. Thus, we further extend the phenotypic variability of muscle caveolinopathies by identification of a severe form of RMD associated with homozygous CAV3 mutations.

77 citations


Journal ArticleDOI
TL;DR: The physiological basis for the differences inManganese and copper concentrations between MS patients and controls is unknown, but could be related to alterations in the manganese- containing enzyme glutamine synthetase and the copper-containing enzyme cytochrome oxidase.
Abstract: The concentrations of manganese, copper, and zinc in cerebrospinal fluid (CSF) from patients with multiple sclerosis (MS) and patients with no known neurological disease (control group) were measured. Manganese and copper levels were determined by two different analytical methods: atomic absorption spectrometry (AAS) and high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS), whereas zinc levels were determined by HR-ICP-MS only. Manganese levels (mean±SEM) were significantly decreased in the CSF of MS patients (1.07±0.13 µg/L, ICP-MS; 1.08±0.11 µg/L, AAS) compared to the levels in the control group (1.78±0.26 µg/L, ICP-MS; 1.51±0.17 µg/L, AAS). Copper levels were significantly elevated in the CSF of MS patients (10.90±1.11 µg/L; ICP-MS, 11.53±0.83 µg/L, AAS) compared to the levels in the control group (8.67±0.49 µg/L, ICP-MS; 9.10±0.62 µg/L, AAS). There were no significant differences between the CSF zinc levels of MS and control patients. The physiological basis for the differences in manganese and copper concentrations between MS patients and controls is unknown, but could be related to alterations in the manganese-containing enzyme glutamine synthetase and the copper-containing enzyme cytochrome oxidase.

76 citations


Journal ArticleDOI
TL;DR: It can be suggested that increased astrocytic activity 1 day after epileptic seizures results, subsequently, in an increased amino acid turnover in neurons.

30 citations