scispace - formally typeset
Search or ask a question

Showing papers by "Janneth Gonzalez published in 2023"


Journal ArticleDOI
TL;DR: In this article , BoHV-1/5 gB was characterized in terms of function, structure, and antigenicity through bioinformatics tools, and both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate.
Abstract: Bovine herpes virus (BoHV 1 and BoHV-5) are the causative agents of infectious bovine rhinotracheitis (IBR). IBR is responsible for important economic losses in the cattle industry. The envelope glycoprotein B (gB) is essential for BoHV infection of cattle's upper respiratory and genital tract. gB is one of the main candidate antigens for a potential recombinant vaccine since it induces a strong and persistent immune response.In this study, gB of BoHV-1 and BoHV-5 was characterized in terms of function, structure, and antigenicity through bioinformatics tools. gB showed conserved sequence and structure, so, both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate. The immunoinformatic study showed that these two domains have epitopes recognizable by B and T lymphocytes, followed by this, the cDNA domains from BoHV-1/5 gB (Domains-gB) were transformed into the yeast Komagataella phaffii GS115 (previously known as Pichia pastoris). A recombinant protein with molecular weight of about 110 kDa was obtained from the culture media. The vaccine candidate protein (Domains-gB) was recognized by a monoclonal antibody from a commercial ELISA kit used for IBR diagnostic, which may suggest that the epitopes are conserved of the entire infectious virus.Overall, it was shown that the recombinant domains of BoHV-1/5 gB have antigenic and immunogenic properties similar to the native gB. This vaccine candidate is promising to be used in future studies to assess its immunogenicity in an animal model.

1 citations


Journal ArticleDOI
TL;DR: In this article , a transcriptome profiling of normal human astrocytes was performed to investigate the molecular mechanisms by which palmitic acid causes cellular damage to the cells, and whether tibolone could reverse its detrimental effects.
Abstract: Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the therapeutic potential of the tibolone metabolites 3α-Hydroxytibols, 3β-Hydroxyltibolones, and Δ4-Tibols as a possible therapy in Traumatic Brain Injury (TBI) using network pharmacology and network topology analysis.