scispace - formally typeset
Search or ask a question

Showing papers by "Javier M. Rodríguez published in 2010"


Journal ArticleDOI
TL;DR: It is demonstrated that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry.
Abstract: As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.

78 citations


Journal ArticleDOI
TL;DR: It is shown that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62, and that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes.
Abstract: The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.

45 citations


Journal ArticleDOI
TL;DR: Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle, and its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles.
Abstract: One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.

37 citations


Journal ArticleDOI
TL;DR: The utility of this new ISH protocol to study ASFV pathogenesis and its potential use as a diagnostic tool is demonstrated, with the detection of a specific ISH-signal in lymphocytes and a tendency to find the signal in the nucleus of infected cells.

19 citations