scispace - formally typeset
Search or ask a question

Showing papers by "Jean-Marc Latour published in 2011"


Journal ArticleDOI
TL;DR: DFT calculations support the experimental results with extremely low activation barriers in the C–H bond activation of cyclohexane and 1,4-cyclohexadiene and reveal that the S = 1 state is set up to easily lead to the highly reactive S = 2 high-spin iron(IV)-oxo species.
Abstract: A highly reactive mononuclear nonheme iron(IV)-oxo complex with a low-spin (S = 1) triplet ground state in both C–H bond activation and oxo transfer reactions is reported; this nonheme iron(IV)-oxo complex is more reactive than an iron(IV)-oxo porphyrin π-cation radical (i.e., a model of cytochrome P450 compound I) and is the most reactive species in kinetic studies among nonheme iron(IV)-oxo complexes reported so far. DFT calculations support the experimental results with extremely low activation barriers in the C–H bond activation of cyclohexane and 1,4-cyclohexadiene. The DFT calculations reveal that the S = 1 state is set up to easily lead to the highly reactive S = 2 high-spin iron(IV)-oxo species.

160 citations


Journal ArticleDOI
20 Jul 2011-PLOS ONE
TL;DR: It is observed that the presence of CyaY does not alter the relative ratio between [2Fe2S]2+ and [4Fe4S2+ but directly affects enzymatic activity, and shed new light onto the mechanism by which Cyay works.
Abstract: Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation on the scaffold protein IscU. Frataxin/CyaY is a highly conserved protein implicated in an incurable ataxia in humans. Previous studies had suggested a role of CyaY as an inhibitor of iron sulfur cluster formation. Similar studies on the eukaryotic proteins have however suggested for frataxin a role as an activator. Our studies independently confirm that CyaY slows down the reaction and shed new light onto the mechanism by which CyaY works. We observe that the presence of CyaY does not alter the relative ratio between [2Fe2S](2+) and [4Fe4S](2+) but directly affects enzymatic activity.

54 citations


Journal ArticleDOI
TL;DR: This review analyzes the currently available data on true and purported FeMn enzymes with a particular emphasis on their specific physical properties and general considerations on biologically active metals and their substitution in hydrolases and redox active proteins are provided.

43 citations


Journal ArticleDOI
TL;DR: The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H( 2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates.
Abstract: The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.

22 citations


Journal ArticleDOI
TL;DR: A new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex that features an inversion of the iron valences is reported.
Abstract: The coupling of electron and proton transfers is currently under intense scrutiny. This Communication reports a new kind of proton-coupled electron transfer within a homodinuclear first-row transition-metal complex. The triply-bridged complex [Fe(III)(μ-OPh)(μ(2)-mpdp)Fe(II)(NH(2)Bn)] (1; mpdp(2-) = m-phenylenedipropionate) bearing a terminal aminobenzyl ligand can be reversibly deprotonated to the anilinate complex 2 whose core [Fe(II)(μ-OPh)(μ(2)-mpdp)Fe(III)(NHBn)] features an inversion of the iron valences. This observation is supported by a combination of UV-visible, (1)H NMR, and Mossbauer spectroscopic studies.

12 citations