scispace - formally typeset
Search or ask a question

Showing papers by "Jeffrey V. Ravetch published in 2011"


Journal ArticleDOI
07 Jul 2011-Nature
TL;DR: This novel DC-SIGN–TH2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.
Abstract: High-dose intravenous immunoglobulin is a widely used therapeutic preparation of highly purified immunoglobulin G (IgG) antibodies. It is administered at high doses (1-2 grams per kilogram) for the suppression of autoantibody-triggered inflammation in a variety of clinical settings. This anti-inflammatory activity of intravenous immunoglobulin is triggered by a minor population of IgG crystallizable fragments (Fcs), with glycans terminating in α2,6 sialic acids (sFc) that target myeloid regulatory cells expressing the lectin dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN; also known as CD209). Here, to characterize this response in detail, we generated humanized DC-SIGN mice (hDC-SIGN), and demonstrate that the anti-inflammatory activity of intravenous immunoglobulin can be recapitulated by the transfer of bone-marrow-derived sFc-treated hDC-SIGN(+) macrophages or dendritic cells into naive recipients. Furthermore, sFc administration results in the production of IL-33, which, in turn, induces expansion of IL-4-producing basophils that promote increased expression of the inhibitory Fc receptor FcγRIIB on effector macrophages. Systemic administration of the T(H)2 cytokines IL-33 or IL-4 upregulates FcγRIIB on macrophages, and suppresses serum-induced arthritis. Consistent with these results, transfer of IL-33-treated basophils suppressed induced arthritic inflammation. This novel DC-SIGN-T(H)2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.

554 citations


Journal ArticleDOI
19 Aug 2011-Science
TL;DR: It is found that coengagement of the Fc domain of agonistic CD40 monoclonal antibodies (mAbs) with the inhibitory Fcγ receptor F cγRIIB is required for immune activation.
Abstract: CD40, a member of the tumor necrosis factor receptor (TNFR) superfamily, is expressed on antigen-presenting cells (APCs) and is essential for immune activation. Although agonistic CD40 antibodies have been developed for immunotherapy, their clinical efficacy has been limited. We have found that coengagement of the Fc domain of agonistic CD40 monoclonal antibodies (mAbs) with the inhibitory Fcγ receptor FcγRIIB is required for immune activation. Direct comparison of mAbs to CD40 enhanced for activating FcγR binding, hence capable of cytotoxicity, or for inhibitory FcγRIIB binding, revealed that enhancing FcγRIIB binding conferred immunostimulatory activity and considerably greater anti-tumor responses. This unexpected requirement for FcγRIIB in enhancing CD40-mediated immune activation has direct implications for the design of agonistic antibodies to TNFR as therapeutics.

347 citations


Journal ArticleDOI
TL;DR: An adjuvant is described that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses, which leads to augmented serum Ab titers and long-term memory development.
Abstract: A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2 −/− mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2 −/− mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development.

41 citations


Patent
19 Dec 2011
TL;DR: In this paper, the authors describe agents (e.g., agonistic antibodies) able to stimulate the immune system of a mammalian animal and activate target-cell specific T lymphocyte responses.
Abstract: The instant invention relates to agents (e.g., agonistic antibodies) able to stimulate the immune system of a mammalian animal and activate target-cell specific T lymphocyte responses. Such agents may be identified based on the ability to engage a receptor from the TNFR Superfamily and thereby mimic the natural ligand for the receptor from the TNFR Superfamily. Modified antibodies of this class display enhanced immunostimulatory activity and may be formulated and administered for the treatment of a disease or disorder.

24 citations