scispace - formally typeset
Search or ask a question

Showing papers by "Jeremy Bailin published in 2009"


Journal ArticleDOI
TL;DR: The Parkes Galactic All-Sky Survey (GASS) as discussed by the authors is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $2π$ steradians with an effective angular resolution of ~16', at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK.
Abstract: The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $\delta \leq 1^{\circ}$ using the Parkes Radio Telescope. The survey covers $2\pi$ steradians with an effective angular resolution of ~16', at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic HI emission ever made in the Southern sky. In this paper we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.

344 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a model for stochastic pre-enrichment and self-enhancement in globular clusters (GCs) during their formation process.
Abstract: We develop a model for stochastic pre-enrichment and self-enrichment in globular clusters (GCs) during their formation process. GCs beginning their formation have an initial metallicity determined by the pre-enrichment of their surrounding protocloud, but can also undergo internal self-enrichment during formation. Stochastic variations in metallicity arise because of the finite numbers of supernova. We construct an analytic formulation of the combined effects of pre-enrichment and self-enrichment and use Monte Carlo models to verify that the model accurately encapsulates the mean metallicity and metallicity spread among real GCs. The predicted metallicity spread due to self-enrichment alone, a robust prediction of the model, is much smaller than the observed spread among real GCs. This result rules out self-enrichment as a significant contributor to the metal content in most GCs, leaving pre-enrichment as the viable alternative. Self-enrichment can, however, be important for clusters with masses well above 106 M ☉, which are massive enough to hold in a significant fraction of their SN ejecta even without any external pressure confinement. This transition point corresponds well to the mass at which a mass-metallicity relationship (MMR, "blue tilt") appears in the metal-poor cluster sequence in many large galaxies. We therefore, suggest that self-enrichment is the primary driver for the MMR. Other predictions from our model are that the cluster-to-cluster metallicity spread decreases amongst the highest mass clusters; and that the red GC sequence should also display a more modest mass-metallicity trend if it can be traced to similarly high mass.

107 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented HST/ACS imaging, in the B and I bands, of the edge-on Sb/Sc galaxy NGC 5170.
Abstract: Here we present HST/ACS imaging, in the B and I bands, of the edge-on Sb/Sc galaxy NGC 5170. Excluding the central disk region region, we detect a 142 objects with colours and sizes typical of globular clusters (GCs). Our main result is the discovery of a `blue tilt' (a mass-metallicity relation), at the 3sigma level, in the metal-poor GC subpopulation of this Milky Way like galaxy. The tilt is consistent with that seen in massive elliptical galaxies and with the self enrichment model of Bailin & Harris. For a linear mass-metallicity relation, the tilt has the form Z ~ L^{0.42 +/- 0.13}. We derive a total GC system population of 600 +/- 100, making it much richer than the Milky Way. However when this number is normalised by the host galaxy luminosity or stellar mass it is similar to that of M31. Finally, we report the presence of a potential Ultra Compact Dwarf of size ~ 6 pc and luminosity M_I ~ -12.5, assuming it is physically associated with NGC 5170.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the effective radii for 652 clusters with PSF-convolved King and Wilson dynamical model fits and found that the SDF is remarkably similar to those measured for other large galaxies of all types, adding strong support to the view that it is a universal feature of globular cluster systems.
Abstract: Images from the HST ACS are used to carry out a new photometric study of the globular clusters (GCs) in M104, the Sombrero galaxy. The primary focus of our study is the characteristic distribution function of linear sizes (SDF) of the GCs. We measure the effective radii for 652 clusters with PSF-convolved King and Wilson dynamical model fits. The SDF is remarkably similar to those measured for other large galaxies of all types, adding strong support to the view that it is a "universal" feature of globular cluster systems. We develop a more general interpretation of the size distribution function for globular clusters, proposing that the shape of the SDF that we see today for GCs is strongly influenced by the early rapid mass loss during their star forming stage, coupled with stochastic differences from cluster to cluster in the star formation efficiency (SFE) and their initial sizes. We find that the observed SDF shape can be accurately predicted by a simple model in which the protocluster clouds had characteristic sizes of $0.9 \pm 0.1$ pc and SFEs of $0.3 \pm 0.07$. The colors and luminosities of the M104 clusters show the clearly defined classic bimodal form. The blue sequence exhibits a mass/metallicity relation (MMR), following a scaling of heavy-element abundance with luminosity of $Z \sim L^{0.3}$ very similar to what has been found in most giant elliptical galaxies. A quantitative self-enrichment model provides a good first-order match to the data for the same initial SFE and protocluster size that were required to explain the SDF. We also discuss various forms of the globular cluster Fundamental Plane (FP) of structural parameters, and show that useful tests of it can be extended to galaxies beyond the Local Group.

1 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a model for stochastic pre-enrichment and self-enhancement in globular clusters (GCs) during their formation process.
Abstract: We develop a model for stochastic pre-enrichment and self-enrichment in globular clusters (GCs) during their formation process. GCs beginning their formation have an initial metallicity determined by the pre-enrichment of their surrounding protocloud, but can also undergo internal self-enrichment during formation. Stochastic variations in metallicity arise because of the finite numbers of supernova. We construct an analytic formulation of the combined effects of pre-enrichment and self-enrichment and use Monte Carlo models to verify that the model accurately encapsulates the mean metallicity and metallicity spread among real GCs. The predicted metallicity spread due to self-enrichment alone, a robust prediction of the model, is much smaller than the observed spread among real GCs. This result rules out self-enrichment as a significant contributor to the metal content in most GCs, leaving pre-enrichment as the viable alternative. Self-enrichment can, however, be important for clusters with masses well above 10^6 Msun, which are massive enough to hold in a significant fraction of their SN ejecta even without any external pressure confinement. This transition point corresponds well to the mass at which a mass-metallicity relationship ("blue tilt") appears in the metal-poor cluster sequence in many large galaxies. We therefore suggest that self-enrichment is the primary driver for the mass-metallicity relation. Other predictions from our model are that the cluster-to-cluster metallicity spread decreases amongst the highest mass clusters; and that the red GC sequence should also display a more modest mass-metallicity trend if it can be traced to similarly high mass.

1 citations