scispace - formally typeset

JournalISSN: 0067-0049

Astrophysical Journal Supplement Series 

About: Astrophysical Journal Supplement Series is an academic journal. The journal publishes majorly in the area(s): Galaxy & Stars. It has an ISSN identifier of 0067-0049. Over the lifetime, 6404 publication(s) have been published receiving 680103 citation(s).
More filters

Journal ArticleDOI
Eiichiro Komatsu1, Kristine M. Smith2, Jo Dunkley3, Charles L. Bennett4  +17 moreInstitutions (10)
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

10,928 citations

Journal ArticleDOI
David N. Spergel1, Licia Verde1, Hiranya V. Peiris1, Eiichiro Komatsu1  +16 moreInstitutions (7)
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,236 citations

Journal ArticleDOI
David N. Spergel1, Rachel Bean2, Rachel Bean1, Olivier Doré1  +24 moreInstitutions (10)
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

5,799 citations

Journal ArticleDOI
Eiichiro Komatsu1, Jo Dunkley2, Jo Dunkley3, M. R. Nolta4  +16 moreInstitutions (10)
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,716 citations

Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,374 citations

Network Information
Related Journals (5)
The Astrophysical Journal

119.3K papers, 7.1M citations

95% related
arXiv: Astrophysics of Galaxies

23.4K papers, 430.5K citations

93% related
arXiv: Astrophysics

63.1K papers, 2.2M citations

93% related
arXiv: Solar and Stellar Astrophysics

27.6K papers, 462.5K citations

91% related
Astronomy and Astrophysics

59.4K papers, 2.1M citations

91% related
No. of papers from the Journal in previous years