scispace - formally typeset
Search or ask a question

Showing papers by "John Bridges published in 1997"


Journal ArticleDOI
TL;DR: In this paper, the I-Xe ages and ion probe data were also obtained on some of the chondrules and clasts from Parnallee (LL3.4) and Chainpur (LL 3.6) by electron probe microanalysis.
Abstract: — Forty-six chondrules from Chainpur (LL3.4) and 39 chondrules and clasts from Parnallee (LL3.6) have been sectioned and searched for Na-, Cl-rich phases by electron probe microanalysis (EPMA). Oxygen isotopic compositions, I-Xe ages and ion probe data were also obtained on some of these chondrules. Sodium-, Cl-rich glass and microcrystalline sodalite (Na4Al3Si3O12Cl), nepheline (NaAlSiO4), scapolite (Na4Al3Si9O24Cl) have been identified in 7% of the Chainpur and 8% of the Parnallee samples. These phases are present in chondrule mesostases or, in one case, the plagioclase of a barred-olivine chondrule. None of the chondrules contain >5 vol% Na-, Cl-rich phases. In the Chainpur chondrules, they originated through partial devitrification of silica-undersaturated, rare-earth-element-(REE), Na- and Cl-rich mesostases. Two processes have been identified that led to the formation of these mesostases. In two of the chondrules, which consist mainly of low-Ca pyroxene, the extended, metastable crystallization of low-Ca pyroxene created silica-undersaturated, REE-rich residua. Barium- and Cl-enrichments in nepheline and scapolite of one chondrule suggest that there was also an influx of alkalis and Cl during crystallization of the low-Ca pyroxene. Similarly, another one of the Chainpur chondrules, mainly composed of olivine phenocrysts, is markedly enriched in Cl (10 × OC). As there is no evidence of corrosive metasomatism in any of the chondrules, Cl- (and alkali) enrichment is believed to have occurred when they were still partially molten. The chondrules were derived from normal O-isotopic reservoirs, so the postulated influx of Ba, Na and Cl did not occur on an exotic parent body. Trace amounts of nepheline and sodalite, present in two Parnallee chondrules, crystallized from small Na-, Cl-, REE-rich residua following extended crystallization of anorthite. An I-Xe age of 5.0 Ma post-Bjurbole obtained on one of these Parnallee chondrules dates the crystallization of feldspathoid and, thus, formation of the chondrule.

35 citations


Journal ArticleDOI
TL;DR: A survey of clasts and large (>5 mm) chondrules (macrochondrules) within the 833 ordinary chondrites of the Natural History Museum collection was conducted by.
Abstract: — We report the results of a survey of clasts and large (>5 mm) chondrules (macrochondrules) within the 833 ordinary chondrites of the Natural History Museum collection. Thirty-six macrochondrules and 24 clasts were identified and studied. Macrochondrules have textures and mineral assemblages like normal chondrules and so share a common origin. Clasts show evidence for fracturing from larger bodies and can be classified as either: (1) chemically fractionated if they have major and trace-element compositions differing substantially from most chondrules and clasts; (2) impact melt clasts if they have microporphyritic textures and signs that indicate they are derived from shock-melted chondritic material; (3) microporhyritic clasts if they are similar to the last category but lack evidence for derivation through shock melting; or (4) indeterminate clasts forming a diverse class that includes all those clasts that do not fit into the other categories.

33 citations