scispace - formally typeset
Search or ask a question

Showing papers by "Jon Lindstrom published in 2011"


Journal ArticleDOI
TL;DR: It is reported that α5 Asn 398 lowers Ca2+ permeability and increases short-term desensitization in (α4β2)2 α5 but not in ( α3β4)2α5 or (α3β2), which suggests that a positive allosteric modulator would augment nicotine replacement therapy for those with this risk variant.
Abstract: Genomic studies have identified a D398N variation in the α5 subunit of nicotinic acetylcholine receptors (AChRs) that increases risk of nicotine dependence and lung cancer. (α4β2)2α5 AChRs are a significant brain presynaptic subtype in brain. Their high sensitivity to activation by nicotine and high Ca2+ permeability give them substantial functional impact. α3β4* and α3β2* AChRs are predominant postsynaptic AChRs in the autonomic nervous system, but rare in brain. The amino acid 398 of α5 is located in the large cytoplasmic domain near the amphipathic α helix preceding the M4 transmembrane domain. These helices have been shown to influence AChR conductance by forming portals to the central channel. We report that α5 Asn 398 lowers Ca2+ permeability and increases short-term desensitization in (α4β2)2α5 but not in (α3β4)2α5 or (α3β2)2α5 AChRs. This suggests that a positive allosteric modulator would augment nicotine replacement therapy for those with this risk variant. α5 D398N variation does not alter sensitivity to activation. The high sensitivity to activation and desensitization of (α4β2)2α5 AChRs by nicotine results in a narrow concentration range in which activation and desensitization curves overlap. This region centers on 0.2 μM nicotine, a concentration typically sustained in smokers. This concentration would desensitize 60% of these AChRs and permit smoldering activation of the remainder. The low sensitivity to activation and desensitization of (α3β4)2α5 AChRs by nicotine results in a broad region of overlap centered near 10 μM. Thus, at the nicotine concentrations in smokers, negligible activation or desensitization of this subtype would occur.

168 citations


Journal ArticleDOI
TL;DR: For the first time, concatamers formed from combinations of trimers, dimers, and monomers exhibit similar properties, indicating that the linkers between subunits do not alter their functional properties.
Abstract: α6β2β3* acetylcholine receptors (AChRs) on dopaminergic neurons are important targets for drugs to treat nicotine addiction and Parkinson's disease. However, it has not been possible to efficiently express functional α6β2β3* AChRs in oocytes or transfected cells. α6/α3 subunit chimeras permit expression of functional AChRs and reveal that parts of the α6 M1 transmembrane domain and large cytoplasmic domain impair assembly. Concatameric subunits permit assembly of functional α6β2β3* AChRs with defined subunit compositions and subunit orders. Assembly of accessory subunits is limiting in formation of mature AChRs. A single linker between the β3 accessory subunit and an α4 or α6 subunit is sufficient to permit assembly of complex β3-(α4β2)(α6β2) or β3-(α6β2)(α4β2) AChRs. Concatameric pentamers such as β3-α6-β2-α4-β2 have been functionally characterized. α6β2β3* AChRs are sensitive to activation by drugs used for smoking cessation therapy (nicotine, varenicline, and cytisine) and by sazetidine. All these are partial agonists. (α6β2)(α4β2)β3 AChRs are most sensitive to agonists. (α6β2)2β3 AChRs have the greatest Ca2+ permeability. (α4β2)(α6β2)β3 AChRs are most efficiently transported to the cell surface, whereas (α6β2)2β3 AChRs are the least efficiently transported. Dopaminergic neurons may have special chaperones for assembling accessory subunits with α6 subunits and for transporting (α6β2)2β3 AChRs to the cell surface. Concatameric pentamers and pentamers formed from combinations of trimers, dimers, and monomers exhibit similar properties, indicating that the linkers between subunits do not alter their functional properties. For the first time, these concatamers allow analysis of functional properties of α6β2β3* AChRs. These concatamers should enable selection of drugs specific for α6β2β3* AChRs.

85 citations


Journal ArticleDOI
TL;DR: Increases in α4β2*-nAchR binding sites after chronic nicotine treatment reflect increased nAChR protein, as determined by quantitative autoradiography.
Abstract: Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [(125)I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [(125)I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [(125)I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [(125)I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [(125)I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein.

72 citations


Journal ArticleDOI
28 Jan 2011-PLOS ONE
TL;DR: Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels.
Abstract: We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Forster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

37 citations


Patent
02 Sep 2011
TL;DR: In this paper, the authors present a disclosure for compounds such as those shown in FIG. 1.1 (compounds A, B, C, D), 2'substituted nicotine compounds, azetidine compounds, or ether linked nicotine compounds.
Abstract: Embodiments of the present disclosure provide for compounds such as those shown in FIG. 1.1 (compounds A, B, C, and D), 2'substituted nicotine compounds, azetidine compounds, ether linked nicotine compounds (FIG. 1.2, compounds E, F, G, and H), methods of synthesis of the compounds, methods of treatment of a condition using compounds A, B, C, D, 2'substituted nicotine compounds, azetidine compounds, or ether linked nicotine compounds, methods of selectively stimulating alpha7 nAChR and/or alpha4beta2 receptors, and the like.

4 citations