scispace - formally typeset
Search or ask a question

Showing papers by "Juliëtte A. Severin published in 2023"


Journal ArticleDOI
TL;DR: In this article , the effect of single-occupancy rooms on environmental contamination in hospitals was investigated. But the authors focused on the effects of single occupancy rooms on highly resistant microorganisms (HRMO).

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors identify nosocomial transmission routes of SARS-CoV-2 between healthcare workers and patients in a tertiary care hospital and identify potential transmission clusters.
Abstract: Abstract Background Healthcare facilities have been challenged by the risk of SARS-CoV-2 transmission between healthcare workers (HCW) and patients. During the first wave of the COVID-19 pandemic, infections among HCW were observed, questioning infection prevention and control (IPC) measures implemented at that time. Aim This study aimed to identify nosocomial transmission routes of SARS-CoV-2 between HCW and patients in a tertiary care hospital. Methods All SARS-CoV-2 PCR positive HCW and patients identified between 1 March and 19 May 2020, were included in the analysis. Epidemiological data were collected from patient files and HCW contact tracing interviews. Whole genome sequences of SARS-CoV-2 were generated using Nanopore sequencing (WGS). Epidemiological clusters were identified, whereafter WGS and epidemiological data were combined for re-evaluation of epidemiological clusters and identification of potential transmission clusters. HCW infections were further classified into categories based on the likelihood that the infection was acquired via nosocomial transmission. Secondary cases were defined as COVID-19 cases in our hospital, part of a transmission cluster, of which the index case was either a patient or HCW from our hospital. Findings The study population consisted of 293 HCW and 245 patients. Epidemiological data revealed 36 potential epidemiological clusters, with an estimated 222 (75.7%) HCW as secondary cases. WGS results were available for 195 HCW (88.2%) and 20 patients (12.8%) who belonged to an epidemiological cluster. Re-evaluation of the epidemiological clusters, with the available WGS data identified 31 transmission clusters with 65 (29.4%) HCW as secondary cases. Transmission clusters were all part of 18 (50.0%) previously determined epidemiological clusters, demonstrating that several larger outbreaks actually consisted, of several smaller transmission clusters. A total of 21 (7.2%) HCW infections were classified as from confirmed nosocomial, of which 18 were acquired from another HCW and 3 from a patient. Conclusion The majority of SARS-CoV-2 infections among HCW could be attributed to community-acquired infection. Infections among HCW that could be classified as due to nosocomial transmission, were mainly caused by HCW-to-HCW transmission rather than patient-to-HCW transmission. It is important to recognize the uncertainties of cluster analyses based solely on epidemiological data.

Journal ArticleDOI
24 Mar 2023-PLOS ONE
TL;DR: In this article , an intervention was initiated in several wards to install sink drain plugs as physical barriers against splashing to prevent transmission of VIM-PA from drain reservoirs to the surrounding sink environment.
Abstract: Background In healthcare environments, sinks are being increasingly recognized as reservoirs for multidrug-resistant Gram-negative bacteria. In our hospital, carbapenemase-producing, Verona Integron-encoded Metallo-beta-lactamase (VIM)-positive Pseudomonas aeruginosa (VIM-PA) was detected at low endemicity in patients, and environmental culturing revealed that sink drains were primary reservoirs. Therefore, an intervention was initiated in several wards to install sink drain plugs as physical barriers against splashing to prevent transmission of VIM-PA from drain reservoirs to the surrounding sink environment. Aim To assess the efficacy of the intervention on limiting spread of VIM-PA. Methods Swabs were taken from inner sink environments (i.e. drains), and outer sink environments (i.e. wash basins, faucet aerators, and countertops) twice before and three times after the intervention. Siphon water and drain wells were also sampled before and at the moment of the intervention, respectively. All samples were screened for VIM-PA, and isolates were typed with multiple-locus variable-number tandem repeat analysis (MLVA). Results There was a significant reduction in VIM-PA positivity in both inner (P-value <0.001) and outer (P-value 0.001) sink environments after the intervention. However, VIM-PA recolonization was observed in the inner sink environments of patient rooms, and also in rooms exclusive to healthcare personnel, over time. Surfaces in the outer sink environment were rarely positive for VIM-PA after the intervention. MLVA revealed three genetic clusters, with one found in all wards and room types during the study period. Conclusions Drain plugs are a simple and effective infection prevention and control measure to contain spread of VIM-PA from drain reservoirs.


Journal ArticleDOI
TL;DR: In this paper , the authors defined the number of screening cultures needed to increase sensitivity to detect VRE transmission, and to determine time from presumed exposure to detectable colonization, and determined the median time between the positive culture of the index patient and the first positive cultures of secondary cases.
Abstract: Detection of vancomycin-resistant Enterococcus faecium (VRE) is hampered by low sensitivity of rectal swab cultures. This study aimed to define the number of screening cultures needed to increase sensitivity to detect VRE transmission, and to determine time from presumed exposure to detectable colonization. In a tertiary care setting, we retrospectively analyzed data from 9 VRE outbreaks. As a proxy or estimation for time to detectable colonization, the time between first positive culture of the presumed index patient and that of their contacts was determined. Only 64% of secondary cases were positive in the first out of five cultures. By using the first three out of five rectal swabs, 89% (95%CI: 78-95%) of all secondary cases would have been identified. The median number of days between the positive culture of the index patient and the first positive culture of secondary cases was 9 days. Eleven percent of secondary cases would have been missed if only three rectal samples would have been obtained. Furthermore, our results show that one or more rectal swabs taken around day 9 after presumed exposure should at least be included in the screening approach. In our setting, obtaining a fourth and a fifth rectal swab showed a relevant additional value compared to only one to three swabs. Our findings are useful for determining the most effective VRE contact tracing approach to prevent transmission.

Journal ArticleDOI
TL;DR: In this paper , a systematic review aims to summarize OI performed after detection of Pseudomonas aeruginosa (CRPA) in the endemic and epidemic hospital setting.
Abstract: Abstract Background Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are a serious cause of healthcare-associated infections. Part of the infection prevention and control measures are outbreak investigations (OI) of patients, healthcare workers (HCW), and the environment after identifying a CRPA in order to identify carriers and environmental reservoirs, so that targeted actions can be taken to prevent further transmission. However, little is known on when and how to perform such OI. Therefore, this systematic review aims to summarize OI performed after detection of CRPA in the endemic and epidemic hospital setting. Main text Articles related to our research question were identified through a literature research in multiple databases (Embase, Medline Ovid, Cochrane, Scopus, Cinahl, Web of Science, and Google Scholar) until January 12, 2022 (Prospero registration number CRD42020194165). Hundred-twenty-six studies were included. In both the endemic and the epidemic setting, a median number of two out of seven predefined components of OI were identified. In the endemic setting, the most frequent component of OI was screening of the environment (28 studies, 62.2%). In the epidemic setting, screening of the environment (72 studies, 88.9%), and screening of patients during hospitalization (30 studies, 37%) were most frequently performed. Only 19 out of 126 studies (15.1%) reported screening of contact patients, and 37 studies reported screening of healthcare workers (HCW, 29.4%). Conclusion Due to probable underreporting of OI in the literature, the available evidence for the usefulness of the individual components of OI is scarce. This could lead to inhomogeneous performance of OI after detection of CRPA in the healthcare setting, and with this, potential under- or overscreening. While we could show evidence for the usefulness for environmental screening in order to identify the mode of transmission, evidence for HCW screening is scarce and might not lead to the identification of modes of transmission. Further studies are needed to better understand CI in different settings and, finally, develop guidance on when and how to best perform OI.

Journal ArticleDOI
TL;DR: In this paper , the authors assess the existing IPC level in a nationwide survey, using the World Health Organization (WHO) IPC assessment framework tool (IPCAF), and identify strengths, gaps, and challenges.
Abstract: Infection prevention and control (IPC) in hospitals is key to safe patient care. There is currently no data regarding the implementation of IPC in hospitals in Indonesia. The aim of this study was to assess the existing IPC level in a nationwide survey, using the World Health Organization (WHO) IPC assessment framework tool (IPCAF), and to identify strengths, gaps, and challenges.A cross-sectional study was conducted from July to November 2021. Of all general hospitals in Indonesia, 20% (N = 475) were selected using stratified random sampling based on class (A, B, C and D; class D with a maximum of 50 beds and class A with ≥ 250 beds) and region. The IPCAF was translated into Indonesian and tested in four hospitals. Questions were added regarding challenges in the implementation of IPC. Quantitative IPCAF scores are reported as median (minimum-maximum). IPC levels were calculated according to WHO tools.In total, 355 hospitals (74.7%) participated in this study. The overall median IPCAF score was 620.0 (535.0-687.5). The level of IPC was mostly assessed as advanced (56.9% of hospitals), followed by intermediate (35.8%), basic (7.0%) and inadequate (0.3%). In the eastern region of the country, the majority of hospitals scored intermediate level. Of the eight core components, the one with the highest score was IPC guidelines. Almost all hospitals had guidelines on the most important topics, including hand hygiene. Core components with the lowest score were surveillance of healthcare-associated infections (HAIs), education and training, and multimodal strategies. Although > 90% of hospitals indicated that surveillance of HAIs was performed, 57.2% reported no availability of adequate microbiology laboratory capacity to support HAIs surveillance. The most frequently reported challenges in the implementation of IPC were communication with the management of the hospitals, followed by the unavailability of antimicrobial susceptibility testing results and insufficient staffing of full-time IPC nurses.The IPC level in the majority of Indonesian hospitals was assessed as advanced, but there was no even distribution over the country. The IPCAF in combination with interviews identified several priority areas for interventions to improve IPC in Indonesian hospitals.


Journal ArticleDOI
TL;DR: Healthcare environmental hygiene (HEH) has become recognized as being increasingly important for patient safety and the prevention of healthcareassociated infections at the 2022 Healthcare Cleaning Forum at Interclean in Amsterdam as discussed by the authors .
Abstract: Healthcare environmental hygiene (HEH) has become recognized as being increasingly important for patient safety and the prevention of healthcare-associated infections. At the 2022 Healthcare Cleaning Forum at Interclean in Amsterdam, the academic lectures focused on a series of main areas of interest. These areas are indicative of some of the main trends and avenues for research in the coming years. Both industry and academia need to take steps to continue the momentum of HEH as we transition out of the acute phase of the Covid-19 pandemic. There is a need for new ways to facilitate collaboration between the academic and private sectors. The Clean Hospitals® network was presented in the context of the need for both cross-disciplinarity and evidence-based interventions in HEH. Governmental bodies have also become more involved in the field, and both the German DIN 13603 standard and the UK NHS Cleaning Standards were analyzed and compared. The challenge of environmental pathogens was explored through the example of how P. aeruginosa persists in the healthcare environment. New innovations in HEH were presented, from digitalization to tracking, and automated disinfection to antimicrobial surfaces. The need for sustainability in HEH was also explored, focusing on the burden of waste, the need for a circular economy, and trends towards increasingly local provision of goods and services. The continued focus on and expansion of these areas of HEH will result in safer patient care and contribute to better health systems.