scispace - formally typeset
Search or ask a question

Showing papers by "Kaiming He published in 2017"


Journal ArticleDOI
TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Abstract: State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with ’attention’ mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps ( including all steps ) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

26,458 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

16,727 citations


Proceedings ArticleDOI
20 Mar 2017
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation, which extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.
Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

14,299 citations


Proceedings ArticleDOI
Tsung-Yi Lin1, Priya Goyal2, Ross Girshick2, Kaiming He2, Piotr Dollár2 
07 Aug 2017
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors.

12,161 citations


Proceedings Article
20 Mar 2017
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: this https URL

11,343 citations


Posted Content
Tsung-Yi Lin1, Priya Goyal1, Ross Girshick1, Kaiming He1, Piotr Dollár1 
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors. Code is at: this https URL.

7,715 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: ResNeXt as discussed by the authors is a simple, highly modularized network architecture for image classification, which is constructed by repeating a building block that aggregates a set of transformations with the same topology.
Abstract: We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call cardinality (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.

7,183 citations


Posted Content
TL;DR: This paper empirically show that on the ImageNet dataset large minibatches cause optimization difficulties, but when these are addressed the trained networks exhibit good generalization and enable training visual recognition models on internet-scale data with high efficiency.
Abstract: Deep learning thrives with large neural networks and large datasets. However, larger networks and larger datasets result in longer training times that impede research and development progress. Distributed synchronous SGD offers a potential solution to this problem by dividing SGD minibatches over a pool of parallel workers. Yet to make this scheme efficient, the per-worker workload must be large, which implies nontrivial growth in the SGD minibatch size. In this paper, we empirically show that on the ImageNet dataset large minibatches cause optimization difficulties, but when these are addressed the trained networks exhibit good generalization. Specifically, we show no loss of accuracy when training with large minibatch sizes up to 8192 images. To achieve this result, we adopt a hyper-parameter-free linear scaling rule for adjusting learning rates as a function of minibatch size and develop a new warmup scheme that overcomes optimization challenges early in training. With these simple techniques, our Caffe2-based system trains ResNet-50 with a minibatch size of 8192 on 256 GPUs in one hour, while matching small minibatch accuracy. Using commodity hardware, our implementation achieves ~90% scaling efficiency when moving from 8 to 256 GPUs. Our findings enable training visual recognition models on internet-scale data with high efficiency.

2,945 citations


Journal ArticleDOI
TL;DR: In this article, a network on convolutional feature maps (NoC) is proposed for object detection, which uses shared, region-independent CNN features to improve the performance of object detection.
Abstract: Most object detectors contain two important components: a feature extractor and an object classifier. The feature extractor has rapidly evolved with significant research efforts leading to better deep convolutional architectures. The object classifier, however, has not received much attention and many recent systems (like SPPnet and Fast/Faster R-CNN) use simple multi-layer perceptrons. This paper demonstrates that carefully designing deep networks for object classification is just as important. We experiment with region-wise classifier networks that use shared, region-independent convolutional features. We call them “Networks on Convolutional feature maps” (NoCs). We discover that aside from deep feature maps, a deep and convolutional per-region classifier is of particular importance for object detection, whereas latest superior image classification models (such as ResNets and GoogLeNets) do not directly lead to good detection accuracy without using such a per-region classifier. We show by experiments that despite the effective ResNets and Faster R-CNN systems, the design of NoCs is an essential element for the 1st-place winning entries in ImageNet and MS COCO challenges 2015.

375 citations


Proceedings ArticleDOI
09 Aug 2017
TL;DR: In this paper, the authors propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance differences (viewpoint, pose, deformations, illumination, etc.).
Abstract: Learning visual representations with self-supervised learning has become popular in computer vision. The idea is to design auxiliary tasks where labels are free to obtain. Most of these tasks end up providing data to learn specific kinds of invariance useful for recognition. In this paper, we propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance variations (viewpoint, pose, deformations, illumination, etc.). Instead of combining two approaches with multi-task learning, we argue to organize and reason the data with multiple variations. Specifically, we propose to generate a graph with millions of objects mined from hundreds of thousands of videos. The objects are connected by two types of edges which correspond to two types of invariance: “different instances but a similar viewpoint and category” and “different viewpoints of the same instance”. By applying simple transitivity on the graph with these edges, we can obtain pairs of images exhibiting richer visual invariance. We use this data to train a Triplet-Siamese network with VGG16 as the base architecture and apply the learned representations to different recognition tasks. For object detection, we achieve 63.2% mAP on PASCAL VOC 2007 using Fast R-CNN (compare to 67.3% with ImageNet pre-training). For the challenging COCO dataset, our method is surprisingly close (23.5%) to the ImageNet-supervised counterpart (24.4%) using the Faster R-CNN framework. We also show that our network can perform significantly better than the ImageNet network in the surface normal estimation task.

209 citations


Posted Content
Ilija Radosavovic1, Piotr Dollár1, Ross Girshick1, Georgia Gkioxari1, Kaiming He1 
TL;DR: Data distillation as mentioned in this paper ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations, which can be used for omni-supervised learning.
Abstract: We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.

Posted Content
TL;DR: In this article, a non-local operation computes the response at a position as a weighted sum of the features at all positions, which can be used to capture long-range dependencies.
Abstract: Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at this https URL .

Posted Content
TL;DR: In this paper, a human-centric approach is proposed to detect triplets in challenging everyday photos by predicting an action-specific density over target object locations based on the appearance of a detected person.
Abstract: To understand the visual world, a machine must not only recognize individual object instances but also how they interact. Humans are often at the center of such interactions and detecting human-object interactions is an important practical and scientific problem. In this paper, we address the task of detecting triplets in challenging everyday photos. We propose a novel model that is driven by a human-centric approach. Our hypothesis is that the appearance of a person -- their pose, clothing, action -- is a powerful cue for localizing the objects they are interacting with. To exploit this cue, our model learns to predict an action-specific density over target object locations based on the appearance of a detected person. Our model also jointly learns to detect people and objects, and by fusing these predictions it efficiently infers interaction triplets in a clean, jointly trained end-to-end system we call InteractNet. We validate our approach on the recently introduced Verbs in COCO (V-COCO) and HICO-DET datasets, where we show quantitatively compelling results.

Posted Content
TL;DR: Mask R-CNN as discussed by the authors proposes a new partially supervised training paradigm, together with a novel weight transfer function, that enables training instance segmentation models on a large set of categories all of which have box annotations, but only a small fraction of which has mask annotations.
Abstract: Most methods for object instance segmentation require all training examples to be labeled with segmentation masks. This requirement makes it expensive to annotate new categories and has restricted instance segmentation models to ~100 well-annotated classes. The goal of this paper is to propose a new partially supervised training paradigm, together with a novel weight transfer function, that enables training instance segmentation models on a large set of categories all of which have box annotations, but only a small fraction of which have mask annotations. These contributions allow us to train Mask R-CNN to detect and segment 3000 visual concepts using box annotations from the Visual Genome dataset and mask annotations from the 80 classes in the COCO dataset. We evaluate our approach in a controlled study on the COCO dataset. This work is a first step towards instance segmentation models that have broad comprehension of the visual world.

Posted Content
TL;DR: In this paper, the authors propose to exploit different self-supervised approaches to learn representations invariant to inter-instance and intra-instance variations (viewpoint, pose, deformations, illumination, etc).
Abstract: Learning visual representations with self-supervised learning has become popular in computer vision. The idea is to design auxiliary tasks where labels are free to obtain. Most of these tasks end up providing data to learn specific kinds of invariance useful for recognition. In this paper, we propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance variations (viewpoint, pose, deformations, illumination, etc). Instead of combining two approaches with multi-task learning, we argue to organize and reason the data with multiple variations. Specifically, we propose to generate a graph with millions of objects mined from hundreds of thousands of videos. The objects are connected by two types of edges which correspond to two types of invariance: "different instances but a similar viewpoint and category" and "different viewpoints of the same instance". By applying simple transitivity on the graph with these edges, we can obtain pairs of images exhibiting richer visual invariance. We use this data to train a Triplet-Siamese network with VGG16 as the base architecture and apply the learned representations to different recognition tasks. For object detection, we achieve 63.2% mAP on PASCAL VOC 2007 using Fast R-CNN (compare to 67.3% with ImageNet pre-training). For the challenging COCO dataset, our method is surprisingly close (23.5%) to the ImageNet-supervised counterpart (24.4%) using the Faster R-CNN framework. We also show that our network can perform significantly better than the ImageNet network in the surface normal estimation task.