scispace - formally typeset
Search or ask a question

Showing papers by "Kaiming He published in 2021"


Posted Content
TL;DR: This work investigates the effects of several fundamental components for training self-supervised ViT, and reveals that these results are indeed partial failure, and they can be improved when training is made more stable.
Abstract: This paper does not describe a novel method Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT) While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results We reveal that these results are indeed partial failure, and they can be improved when training is made more stable We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects We discuss the currently positive evidence as well as challenges and open questions We hope that this work will provide useful data points and experience for future research

949 citations


Proceedings ArticleDOI
Xinlei Chen1, Kaiming He1
01 Jun 2021
TL;DR: SimSiam as discussed by the authors proposes to use a stop-gradient operation to prevent collapsing solutions in Siamese networks, which achieves competitive results on ImageNet and downstream tasks, and further shows proof-of-concept experiments verifying it.
Abstract: Siamese networks have become a common structure in various recent models for unsupervised visual representation learning. These models maximize the similarity between two augmentations of one image, subject to certain conditions for avoiding collapsing solutions. In this paper, we report surprising empirical results that simple Siamese networks can learn meaningful representations even using none of the following: (i) negative sample pairs, (ii) large batches, (iii) momentum encoders. Our experiments show that collapsing solutions do exist for the loss and structure, but a stop-gradient operation plays an essential role in preventing collapsing. We provide a hypothesis on the implication of stop-gradient, and further show proof-of-concept experiments verifying it. Our "SimSiam" method achieves competitive results on ImageNet and downstream tasks. We hope this simple baseline will motivate people to rethink the roles of Siamese architectures for unsupervised representation learning. Code is made available.1

754 citations


Proceedings ArticleDOI
Christoph Feichtenhofer1, Haoqi Fan1, Bo Xiong1, Ross Girshick1, Kaiming He1 
29 Apr 2021
TL;DR: SlowFast as mentioned in this paper proposes a simple objective to encourage temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures.
Abstract: We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code will be made available at https://github.com/facebookresearch/SlowFast.

175 citations


Posted Content
TL;DR: Masked autoencoders (MAE) as mentioned in this paper are scalable self-supervised learners for computer vision, which is based on two core designs: an asymmetric encoder-decoder architecture with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens.
Abstract: This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

17 citations


Proceedings Article
05 Apr 2021
TL;DR: In this article, the authors investigate the effects of several fundamental components for self-supervised learning for vision Transformers (ViT) and reveal that these results are indeed partial failure, and they can be improved when training is made more stable.
Abstract: This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.

9 citations



Posted Content
Christoph Feichtenhofer1, Haoqi Fan1, Bo Xiong1, Ross Girshick1, Kaiming He1 
TL;DR: In this paper, the authors present a large-scale study on unsupervised spatio-temporal representation learning from videos and propose a simple objective that can easily generalize all these methods to space-time.
Abstract: We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at this https URL

1 citations