scispace - formally typeset
Search or ask a question
Author

Kang Li

Bio: Kang Li is an academic researcher from Imperial College London. The author has contributed to research in topics: Membrane & Ceramic. The author has an hindex of 69, co-authored 339 publications receiving 17111 citations. Previous affiliations of Kang Li include University of Alberta & University of Salford.


Papers
More filters
Journal ArticleDOI
Fu Liu1, N. Awanis Hashim1, Yutie Liu1, M.R. Moghareh Abed1, Kang Li1 
TL;DR: A comprehensive overview of recent progress on the production and modification of polyvinylidene fluoride (PVDF) membranes for liquid-liquid or liquid-solid separation can be found in this article.

1,776 citations

Journal ArticleDOI
TL;DR: This review article aims at studying the applications of water stable MOFs in terms of five major areas: adsorption, membrane separation, sensing, catalysis, and proton conduction.
Abstract: The recent advancement of water stable metal–organic frameworks (MOFs) expands the application of this unique porous material. This review article aims at studying their applications in terms of five major areas: adsorption, membrane separation, sensing, catalysis, and proton conduction. These applications are either conducted in a water-containing environment or directly targeted on water treatment processes. The representative and significant studies in each area were comprehensively reviewed and discussed for perspectives, to serve as a reference for researchers working in related areas. At the end, a summary and future outlook on the applications of water stable MOFs are suggested as concluding remarks.

892 citations

Journal ArticleDOI
TL;DR: In this paper, the main research carried out up to 2007 in hydrophilic pervaporation has been summarized and a summary of the current state of the art can be found.

571 citations

Journal ArticleDOI
TL;DR: Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions, and the high separation performance combined with its outstanding water stability suggests the developed Ui O-66 membrane as a promising candidate for water desalination.
Abstract: In this study, continuous zirconium(IV)-based metal–organic framework (Zr-MOF) membranes were prepared. The pure-phase Zr-MOF (i.e., UiO-66) polycrystalline membranes were fabricated on alumina hollow fibers using an in situ solvothermal synthesis method. Single-gas permeation and ion rejection tests were carried out to confirm membrane integrity and functionality. The membrane exhibited excellent multivalent ion rejection (e.g., 86.3% for Ca2+, 98.0% for Mg2+, and 99.3% for Al3+) on the basis of size exclusion with moderate permeance (0.14 L m–2 h–1 bar–1) and good permeability (0.28 L m–2 h–1 bar–1 μm). Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions. The high separation performance combined with its outstanding water stability suggests the developed UiO-66 membrane as a promising candidate for water desalination.

542 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of polymer concentration, air gap, polyvinyl pyrrolidone (PVP) molecular weight, PVP content in the polymer dope, and internal coagulant on the permeation properties and membrane structures were examined.

349 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors extensively review the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems.

2,616 citations

Journal ArticleDOI
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.

2,242 citations

Journal ArticleDOI
TL;DR: This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
Abstract: Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure–property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

2,239 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
TL;DR: In this paper, the most promising areas of research in gas separation, by considering the materials for membranes, the industrial applications of membrane gas separations, and finally the opportunities for the integration of membrane separation units in hybrid systems for the intensification of processes.
Abstract: In the last years membrane processes for gas separation are gaining a larger acceptance in industry and in the market are competing with consolidated operations such as pressure swing absorption and cryogenic distillation. The key for new applications of membranes in challenging and harsh environments (e.g., petrochemistry) is the development of new tough, high performance materials. The modular nature of membrane operations is intrinsically fit for process intensification, and this versatility might be a decisive factor to impose membrane processes in most gas separation fields, in a similar way as today membranes represent the main technology for water treatment. This review highlights the most promising areas of research in gas separation, by considering the materials for membranes, the industrial applications of membrane gas separations, and finally the opportunities for the integration of membrane gas separation units in hybrid systems for the intensification of processes.

1,801 citations