scispace - formally typeset
Search or ask a question
Author

Karl Ricanek

Bio: Karl Ricanek is an academic researcher from University of North Carolina at Wilmington. The author has contributed to research in topics: Facial recognition system & Feature extraction. The author has an hindex of 22, co-authored 101 publications receiving 2608 citations. Previous affiliations of Karl Ricanek include University of North Carolina at Chapel Hill & Wilmington University.


Papers
More filters
Proceedings ArticleDOI
10 Apr 2006
TL;DR: The MORPH dataset as discussed by the authors is a longitudinal face database developed for researchers investigating all facets of adult age-progression, e.g. face modeling, photo-realistic animation, face recognition, etc.
Abstract: This paper details MORPH a longitudinal face database developed for researchers investigating all facets of adult age-progression, e.g. face modeling, photo-realistic animation, face recognition, etc. This database contributes to several active research areas, most notably face recognition, by providing: the largest set of publicly available longitudinal images; longitudinal spans from a few months to over twenty years; and, the inclusion of key physical parameters that affect aging appearance. The direct contribution of this data corpus for face recognition is highlighted in the evaluation of a standard face recognition algorithm, which illustrates the impact that age-progression, has on recognition rates. Assessment of the efficacy of this algorithm is evaluated against the variables of gender and racial origin. This work further concludes that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work.

1,051 citations

Journal ArticleDOI
TL;DR: Findings on environmental and innate influences on face aging, facial soft tissue age changes, and bony changes in the craniofacial and dentoalveolar skeleton are presented.

284 citations

Proceedings ArticleDOI
28 Sep 2009
TL;DR: A novel age estimation technique that combines Active Appearance Models (AAMs) and Support Vector Machines (SVMs) to dramatically improve the accuracy of age estimation over the current state-of-the-art techniques is introduced.
Abstract: In this paper, we introduce a novel age estimation technique that combines Active Appearance Models (AAMs) and Support Vector Machines (SVMs), to dramatically improve the accuracy of age estimation over the current state-of-the-art techniques. In this method, characteristics of the input images, face image, are interpreted as feature vectors by AAMs, which are used to discriminate between childhood and adulthood, prior to age estimation. Faces classified as adults are passed to the adult age-determination function and the others are passed to the child age-determination function. Compared to published results, this method yields the highest accuracy recognition rates, both in overall mean-absolute error (MAE) and mean-absolute error for the two periods of human development: childhood and adulthood.

151 citations

01 Jan 2006
TL;DR: It is concluded that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work, and the efficacy of this algorithm is evaluated against the variables of gender and racial origin.
Abstract: This paper details MORPH a longitudinal face database developed for researchers investigating all facets of adult age-progression, e.g. face modeling, photo-realistic animation, face recognition, etc. This database contributes to several active research areas, most notably face recognition, by providing: the largest set of publicly available longitudinal images; longitudinal spans from a few months to over twenty years; and, the inclusion of key physical parameters that affect aging appearance. The direct contribution of this data corpus for face recognition is highlighted in the evaluation of a standard face recognition algorithm, which illustrates the impact that age-progression, has on recognition rates. Assessment of the efficacy of this algorithm is evaluated against the variables of gender and racial origin. This work further concludes that the problem of age-progression on face recognition (FR) is not unique to the algorithm used in this work.

139 citations

Proceedings ArticleDOI
12 Dec 2007
TL;DR: A summary of recent research that spans biometric, forensic, and anthropologic literature in an attempt to unify a variety of findings related to adult aging, discusses work in synthesizing images of aged faces and its relation to the anthropological findings, and also presents work demonstrating a need for further study in this area to improve face-based biometric techniques.
Abstract: There is a great degree of variation that occurs in the face during aging of adults that will affect outcomes for face- based biometric systems. These changes have been studied sporadically in anthropological research and have received even less attention in biometric-related literature. This paper presents a summary of recent research that spans biometric, forensic, and anthropologic literature in an attempt to unify a variety of findings related to adult aging, discusses work in synthesizing images of aged faces and its relation to the anthropological findings, and also presents work demonstrating a need for further study in this area to improve face-based biometric techniques. Only age-invariant or aging-aware methods will have the best success in longer stretches of time.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal Article
TL;DR: An independence criterion based on the eigen-spectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator, or HSIC, is proposed.
Abstract: We propose an independence criterion based on the eigen-spectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on HSIC do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

1,134 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This paper proposes a simple convolutional net architecture that can be used even when the amount of learning data is limited and shows that by learning representations through the use of deep-convolutional neural networks, a significant increase in performance can be obtained on these tasks.
Abstract: Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition. In this paper we show that by learning representations through the use of deep-convolutional neural networks (CNN), a significant increase in performance can be obtained on these tasks. To this end, we propose a simple convolutional net architecture that can be used even when the amount of learning data is limited. We evaluate our method on the recent Adience benchmark for age and gender estimation and show it to dramatically outperform current state-of-the-art methods.

1,046 citations

Journal ArticleDOI
TL;DR: This paper proposes an automatic age estimation method named AGES (AGing pattErn Subspace), which is to model the aging pattern, which is defined as the sequence of a particular individual's face images sorted in time order, by constructing a representative subspace.
Abstract: While recognition of most facial variations, such as identity, expression, and gender, has been extensively studied, automatic age estimation has rarely been explored. In contrast to other facial variations, aging variation presents several unique characteristics which make age estimation a challenging task. This paper proposes an automatic age estimation method named AGES (AGing pattErn Subspace). The basic idea is to model the aging pattern, which is defined as the sequence of a particular individual's face images sorted in time order, by constructing a representative subspace. The proper aging pattern for a previously unseen face image is determined by the projection in the subspace that can reconstruct the face image with minimum reconstruction error, while the position of the face image in that aging pattern will then indicate its age. In the experiments, AGES and its variants are compared with the limited existing age estimation methods (WAS and AAS) and some well-established classification methods (kNN, BP, C4.5, and SVM). Moreover, a comparison with human perception ability on age is conducted. It is interesting to note that the performance of AGES is not only significantly better than that of all the other algorithms, but also comparable to that of the human observers.

912 citations