scispace - formally typeset
Search or ask a question

Showing papers by "Khajamohiddin Syed published in 2017"


Journal ArticleDOI
TL;DR: Docking against homology-modeled targets also becomes possible for proteins whose structures are not known, and the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes.
Abstract: Molecular docking methodology explores the behavior of small molecules in the binding site of a target protein. As more protein structures are determined experimentally using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, molecular docking is increasingly used as a tool in drug discovery. Docking against homology-modeled targets also becomes possible for proteins whose structures are not known. With the docking strategies, the druggability of the compounds and their specificity against a particular target can be calculated for further lead optimization processes. Molecular docking programs perform a search algorithm in which the conformation of the ligand is evaluated recursively until the convergence to the minimum energy is reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to rank the candidate poses as the sum of the electrostatic and van der Waals energies. The driving forces for these specific interactions in biological systems aim toward complementarities between the shape and electrostatics of the binding site surfaces and the ligand or substrate.

817 citations


Journal ArticleDOI
TL;DR: The results of this study represent the beginning of identification of microorganisms capable of degrading nonylphenol, and pave the way for further exploration of EDC-degrading microorganisms from South Africa.
Abstract: Endocrine disrupting chemicals (EDCs) are synthetic chemicals that alter the function of endocrine systems in animals including humans. EDCs are considered priority pollutants and worldwide research is ongoing to develop bioremediation strategies to remove EDCs from the environment. An understanding of indigenous microorganisms is important to design efficient bioremediation strategies. However, much of the information available on EDCs has been generated from developed regions. Recent studies have revealed the presence of different EDCs in South African natural resources, but, to date, studies analysing the capabilities of microorganisms to utilise/degrade EDCs have not been reported from South Africa. Here, we report for the first time on the isolation and enrichment of six bacterial strains from six different soil samples collected from the Mpumalanga Province, which are capable of utilising EDC nonylphenol as a carbon source. Furthermore, we performed a preliminary characterisation of isolates concerning their phylogenetic identification and capabilities to degrade nonylphenol. Phylogenetic analysis using 16S rRNA gene sequencing revealed that four isolates belonged to Pseudomonas and the remaining two belonged to Enterobacteria and Stenotrophomonas. All six bacterial species showed degradation of nonylphenol in broth cultures, as HPLC analysis revealed 41–46% degradation of nonylphenol 12 h after addition. The results of this study represent the beginning of identification of microorganisms capable of degrading nonylphenol, and pave the way for further exploration of EDC-degrading microorganisms from South Africa.

8 citations


Journal ArticleDOI
TL;DR: In this review, the authors highlight the importance of in silico approaches like molecular docking, virtual screening, pharmacophore analysis, molecular dynamics, QSAR, CoMFA and CoMSIA applied to detect molecular mechanisms of prion inhibition and conversion from PrPC-PrPSc.
Abstract: Introduction: To date, various therapeutic strategies identified numerous anti-prion compounds and antibodies that stabilize PrPC, block the conversion of PrPC-PrPSc and increased effect on PrPSc c...

5 citations


Journal ArticleDOI
TL;DR: Virtual screening of a ligand database using the molecular scaffold developed from the set of EBs identified six of the compounds found to be particularly potent in decreasing the accumulation SHaPrPSc in ScN2a cells with an IC50 of ∼35µM and 20µ M.

2 citations