scispace - formally typeset
Search or ask a question
Author

L. Chlubny

Bio: L. Chlubny is an academic researcher from AGH University of Science and Technology. The author has contributed to research in topics: Hot pressing & MAX phases. The author has an hindex of 10, co-authored 34 publications receiving 407 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It was shown that MXene may affect the occurrence of oxidative stress and, in consequence, the generation of reactive oxygen species (ROS), and the observed toxic effects were higher against cancerous cells compared to normal ones.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the expanded Ti2C and Ti3C2 MXene phases were synthesized from their parent Ti2AlC andTi3AlC2 MAX phases using the same conditions of the classical acidic aluminum extraction method.
Abstract: The expanded Ti2C and Ti3C2 MXene phases were synthesized from their parent Ti2AlC and Ti3AlC2 MAX phases using the same conditions of the classical acidic aluminum extraction method. The assumption for the study was that the expanded Ti2C and Ti3C2 MXenes are composed of the same atoms and if are synthesized from MAX phases using the same conditions of the classical acidic aluminum extraction method, the observed bio-effects can be related only to the changes in their structures. The scanning electron microscope investigations indicated that the expanded Ti2C and Ti3C2 sheets formed the specific network of slit-shaped nano-pores. The x-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS) showed almost no difference in surface chemistry of Ti2C and Ti3C2 MXenes. The high-resolution transmission electron microscope investigations revealed, however, differences in atomic structure of the individual Ti2C and Ti3C2 sheets. Measured distance between Ti-C atomic layers in Ti2C was 9.76 A and was larger by 0.53 A in comparison with Ti3C2 (9.23 A). Our investigations of bioactive properties toward model gram-negative Escherichia coli bacterial strain showed that the Ti2C MXene did not influence the viability of bacteria. Contrarily, the Ti3C2 MXene showed antibacterial properties. The results of the study indicate that the structure at the atomic scale may play a key role in the bioactivity of MXenes of the same chemical composition, but different stoichiometry, just like in case of Ti2C and Ti3C2.

76 citations

Journal ArticleDOI
TL;DR: In this paper, the surface properties changes of 2D flakes of MXenes (Ti3C2 and Ti2C) upon interacting with the model cationic protein - lysozyme, using time-resolved dynamic light scattering and zeta potential.

76 citations

Journal ArticleDOI
TL;DR: 2D Ti2NTx in the form of multilayered nanoflakes exhibits fair stability and can be used for in vitro studies and shows promise for its future applications in biotechnology and nanomedicine.
Abstract: The biological activity of MXenes has been studied for several years because of their potential biomedical applications; however, investigations have so far been limited to 2D titanium carbides. Although monolayered Ti2NTx MXene has been expected to have biological activity, experimental studies revealed significant difficulties due to obstacles to its synthesis, its low stability and its susceptibility to oxidation and decomposition. In this paper, we report our theoretical calculations showing the higher likelihood of forming multilayered Ti2NTx structures during the preparation process in comparison to single-layered structures. As a result of our experimental work, we successfully synthesized multilayered Ti2NTx MXene that was suitable for biological studies by the etching of the Ti2AlN MAX phase and further delamination. The biocompatibility of Ti2NTx MXene was evaluated in vitro towards human skin malignant melanoma cells, human immortalized keratinocytes, human breast cancer cells, and normal human mammary epithelial cells. Additionally, the potential mode of action of 2D Ti2NTx was investigated using reactive oxygen tests as well as SEM observations. Our results indicated that multilayered 2D sheets of Ti2NTx showed higher toxicity towards cancerous cell lines in comparison to normal ones. The decrease in cell viabilities was dose-dependent. The generation of reactive oxygen species as well as the internalization of the 2D sheets play a decisive role in the mechanisms of toxicity. We have shown that 2D Ti2NTx in the form of multilayered nanoflakes exhibits fair stability and can be used for in vitro studies. These results show promise for its future applications in biotechnology and nanomedicine.

61 citations

Journal ArticleDOI
TL;DR: A simple, low-cost and fully green approach for controlling the potential cytotoxicity of 2D MXenes after delamination by harnessing the interactions that occur between the surface of MXene phases and natural biomacromolecule - collagen.

60 citations


Cited by
More filters
Journal ArticleDOI
11 Jun 2021-Science
TL;DR: A forward-looking review of the field of 2D carbides and nitrides can be found in this article, where the challenges to be addressed and research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies are discussed.
Abstract: A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.

784 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and optical properties of 2D transition metal carbides, carbonitrides, and nitrides are discussed from both theoretical and experimental perspectives, as well as applications related to those properties.
Abstract: 2D transition metal carbides, carbonitrides, and nitrides, known as MXenes, are a rapidly growing family of 2D materials with close to 30 members experimentally synthesized, and dozens more studied theoretically. They exhibit outstanding electronic, optical, mechanical, and thermal properties with versatile transition metal and surface chemistries. They have shown promise in many applications, such as energy storage, electromagnetic interference shielding, transparent electrodes, sensors, catalysis, photothermal therapy, etc. The high electronic conductivity and wide range of optical absorption properties of MXenes are the key to their success in the aforementioned applications. However, relatively little is currently known about their fundamental electronic and optical properties, limiting their use to their full potential. Here, MXenes' electronic and optical properties from both theoretical and experimental perspectives, as well as applications related to those properties, are discussed, providing a guide for researchers who are exploring those properties of MXenes.

708 citations

Journal ArticleDOI
01 Apr 2018-Small
TL;DR: This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti3 C2 Tx, which will promote the further development of 2D MXenes in energy-storage applications.
Abstract: Ti3 C2 Tx , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti3 C2 Tx directly influence its electrochemical performance, e.g., the use of a well-designed 2D Ti3 C2 Tx as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier/charge-transport kinetics. Some recent progresses of Ti3 C2 Tx MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti3 C2 Tx MXene including supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. The current opportunities and future challenges of Ti3 C2 Tx MXene are addressed for energy-storage devices. This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti3 C2 Tx , which will promote the further development of 2D MXenes in energy-storage applications.

643 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of the processing-microstructure-property correlations of these two carbides and point out methods for further improving their properties in some specific applications through appropriate structural design and modification.

462 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the fundamental properties and synthesis routes of pure MXene, functionalized MXene and their hybrids, highlights the state-of-the-art progresses of MXene-based applications with respect to supercapacitors, batteries, electrocatalysis and photocatalysis, and presents the challenges and prospects in the burgeoning field.
Abstract: MXene, an important and increasingly popular category of postgraphene 2D nanomaterials, has been rigorously investigated since early 2011 because of advantages including flexible tunability in element composition, hydrophobicity, metallic nature, unique in-plane anisotropic structure, high charge-carrier mobility, tunable band gap, and favorable optical and mechanical properties. To fully exploit these potentials and further expand beyond the existing boundaries, novel functional nanostructures spanning monolayer, multilayer, nanoparticles, and composites have been developed by means of intercalation, delamination, functionalization, hybridization, among others. Undeniably, the cutting-edge developments and applications of clay-inspired 2D MXene platform as electrochemical electrode or photo-electrocatalyst have conferred superior performance and have made significant impact in the field of energy and advanced catalysis. This review provides an overview of the fundamental properties and synthesis routes of pure MXene, functionalized MXene and their hybrids, highlights the state-of-the-art progresses of MXene-based applications with respect to supercapacitors, batteries, electrocatalysis and photocatalysis, and presents the challenges and prospects in the burgeoning field.

435 citations