scispace - formally typeset
Search or ask a question

Showing papers by "Lars M. Blank published in 2005"


Journal ArticleDOI
TL;DR: The apparent dispensability of knockout mutants with metabolic function is explained by gene inactivity under a particular condition in about half of the cases, and the relative importance of 'genetic buffering' through alternative pathways and network redundancy through duplicate genes for genetic robustness of the network is quantified.
Abstract: Background Quantification of intracellular metabolite fluxes by 13C-tracer experiments is maturing into a routine higher-throughput analysis. The question now arises as to which mutants should be analyzed. Here we identify key experiments in a systems biology approach with a genome-scale model of Saccharomyces cerevisiae metabolism, thereby reducing the workload for experimental network analyses and functional genomics.

340 citations


Journal ArticleDOI
TL;DR: Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market, but greater understanding of the mechanisms underlying chain termination is required.
Abstract: Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.

310 citations


Journal ArticleDOI
TL;DR: Back-up, regulatory, and gene dosage functions for the 105 duplicate gene families of Saccharomyces cerevisiae metabolism are classified in a systems biology approach and there is no evidence for a particular dominant function that maintains duplicate genes in the genome.
Abstract: The roles of duplicate genes and their contribution to the phenomenon of enzyme dispensability are a central issue in molecular and genome evolution. A comprehensive classification of the mechanisms that may have led to their preservation, however, is currently lacking. In a systems biology approach, we classify here back-up, regulatory, and gene dosage functions for the 105 duplicate gene families of Saccharomyces cerevisiae metabolism. The key tool was the reconciled genome-scale metabolic model iLL672, which was based on the older iFF708. Computational predictions of all metabolic gene knockouts were validated with the experimentally determined phenotypes of the entire singleton yeast library of 4658 mutants under five environmental conditions. iLL672 correctly identified 96%-98% and 73%-80% of the viable and lethal singleton phenotypes, respectively. Functional roles for each duplicate family were identified by integrating the iLL672-predicted in silico duplicate knockout phenotypes, genome-scale carbon-flux distributions, singleton mutant phenotypes, and network topology analysis. The results provide no evidence for a particular dominant function that maintains duplicate genes in the genome. In particular, the back-up function is not favored by evolutionary selection because duplicates do not occur more frequently in essential reactions than singleton genes. Instead of a prevailing role, multigene-encoded enzymes cover different functions. Thus, at least for metabolism, persistence of the paralog fraction in the genome can be better explained with an array of different, often overlapping functional roles.

256 citations


Journal ArticleDOI
TL;DR: The glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project was elucidated and it was found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae.
Abstract: In a quantitative comparative study, we elucidated the glucose metabolism in fourteen hemiascomycetous yeasts from the Genolevures project. The metabolic networks of these different species were first established by (13)C-labeling data and the inventory of the genomes. This information was subsequently used for metabolic-flux ratio analysis to quantify the intracellular carbon flux distributions in these yeast species. Firstly, we found that compartmentation of amino acid biosynthesis in most species was identical to that in Saccharomyces cerevisiae. Exceptions were the mitochondrial origin of aspartate biosynthesis in Yarrowia lipolytica and the cytosolic origin of alanine biosynthesis in S. kluyveri. Secondly, the control of flux through the TCA cycle was inversely correlated with the ethanol production rate, with S. cerevisiae being the yeast with the highest ethanol production capacity. The classification between respiratory and respiro-fermentative metabolism, however, was not qualitatively exclusive but quantitatively gradual. Thirdly, the flux through the pentose phosphate (PP) pathway was correlated to the yield of biomass, suggesting a balanced production and consumption of NADPH. Generally, this implies the lack of active transhydrogenase-like activities in hemiascomycetous yeasts under the tested growth condition, with Pichia angusta as the sole exception. In the latter case, about 40% of the NADPH was produced in the PP pathway in excess of the requirements for biomass production, which strongly suggests the operation of a yet unidentified mechanism for NADPH reoxidation in this species. In most yeasts, the PP pathway activity appears to be driven exclusively by the demand for NADPH.

220 citations


Journal ArticleDOI
TL;DR: The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.
Abstract: Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h-1) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.

71 citations