scispace - formally typeset
Search or ask a question
Author

Lin Shi

Bio: Lin Shi is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Medicine & Internal medicine. The author has an hindex of 31, co-authored 220 publications receiving 3472 citations. Previous affiliations of Lin Shi include Chinese Academy of Sciences & Nanjing University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel automatic method to detect CMBs from magnetic resonance (MR) images by exploiting the 3D convolutional neural network (CNN), outperforming previous methods using low-level descriptors or 2D CNNs by a significant margin.
Abstract: Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelled by radiologists but this procedure is laborious, time-consuming, and error prone. In this paper, we propose a novel automatic method to detect CMBs from magnetic resonance (MR) images by exploiting the 3D convolutional neural network (CNN). Compared with previous methods that employed either low-level hand-crafted descriptors or 2D CNNs, our method can take full advantage of spatial contextual information in MR volumes to extract more representative high-level features for CMBs, and hence achieve a much better detection accuracy. To further improve the detection performance while reducing the computational cost, we propose a cascaded framework under 3D CNNs for the task of CMB detection. We first exploit a 3D fully convolutional network (FCN) strategy to retrieve the candidates with high probabilities of being CMBs, and then apply a well-trained 3D CNN discrimination model to distinguish CMBs from hard mimics. Compared with traditional sliding window strategy, the proposed 3D FCN strategy can remove massive redundant computations and dramatically speed up the detection process. We constructed a large dataset with 320 volumetric MR scans and performed extensive experiments to validate the proposed method, which achieved a high sensitivity of 93.16% with an average number of 2.74 false positives per subject, outperforming previous methods using low-level descriptors or 2D CNNs by a significant margin. The proposed method, in principle, can be adapted to other biomarker detection tasks from volumetric medical data.

567 citations

Journal ArticleDOI
TL;DR: A novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs) that is fast and accurate, demonstrating a good potential in clinical routines.
Abstract: Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.

153 citations

Book ChapterDOI
05 Oct 2015
TL;DR: A novel joint learning model with CNN J-CNN that can effectively identify the type of vertebra and eliminate false detections based on a set of coarse vertebral centroids generated from a random forest classifier.
Abstract: Accurate localization and identification of vertebrae in 3D spinal images is essential for many clinical tasks. However, automatic localization and identification of vertebrae remains challenging due to similar appearance of vertebrae, abnormal pathological curvatures and image artifacts induced by surgical implants. Traditional methods relying on hand-crafted low level features and/or a priori knowledge usually fail to overcome these challenges on arbitrary CT scans. We present a robust and efficient approach to automatically locating and identifying vertebrae in 3D CT volumes by exploiting high level feature representations with deep convolutional neural network CNN. A novel joint learning model with CNN J-CNN is proposed by considering both the appearance of vertebrae and the pairwise conditional dependency of neighboring vertebrae. The J-CNN can effectively identify the type of vertebra and eliminate false detections based on a set of coarse vertebral centroids generated from a random forest classifier. Furthermore, the predicted centroids are refined by a shape regression model. Our approach was quantitatively evaluated on the dataset of MICCAI 2014 Computational Challenge on Vertebrae Localization and Identification. Compared with the state-of-the-art methodi¾?[1], our approach achieved a large margin with 10.12% improvement of the identification rate and smaller localization errors.

135 citations

Journal ArticleDOI
TL;DR: Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption and has the properties of backward diffusion in local normal directions and forward diffusion inLocal tangent directions.
Abstract: Magnetic resonance imaging (MRI) is an outstanding medical imaging modality but the quality often suffers from noise pollution during image acquisition and transmission. The purpose of this study is to enhance image quality using feature-preserving denoising method. In current literature, most existing MRI denoising methods did not simultaneously take the global image prior and local image features into account. The denoising method proposed in this paper is implemented based on an assumption of spatially varying Rician noise map. A two-step wavelet-domain estimation method is developed to extract the noise map. Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption. The proposed model has the properties of backward diffusion in local normal directions and forward diffusion in local tangent directions. To further improve the denoising performance, a local variance estimator-based method is introduced to calculate the spatially adaptive regularization parameters related to local image features and spatially varying noise map. The main benefit of the proposed method is that it takes full advantage of the global MR image prior and local image features. Numerous experiments have been conducted on both synthetic and real MR data sets to compare our proposed model with some state-of-the-art denoising methods. The experimental results have demonstrated the superior performance of our proposed model in terms of quantitative and qualitative image quality evaluations.

117 citations

Journal ArticleDOI
TL;DR: A strategic network involving several overlapping and domain-specific cortical and subcortical structures was identified for each of the cognitive domains and two assumption-free analyses consistently identified the left angular gyrus, left basal ganglia structures and the white matter around the left basal Ganglia as strategic structures for global cognitive impairment after stroke.
Abstract: Lesion location is an important determinant for post-stroke cognitive impairment. Although several ‘strategic’ brain regions have previously been identified, a comprehensive map of strategic brain regions for post-stroke cognitive impairment is lacking due to limitations in sample size and methodology. We aimed to determine strategic brain regions for post-stroke cognitive impairment by applying multivariate lesion-symptom mapping in a large cohort of 410 acute ischemic stroke patients. Montreal Cognitive Assessment at three to six months after stroke was used to assess global cognitive functioning and cognitive domains (memory, language, attention, executive and visuospatial function). The relation between infarct location and cognition was assessed in multivariate analyses at the voxel-level and the level of regions of interest using support vector regression. These two assumption-free analyses consistently identified the left angular gyrus, left basal ganglia structures and the white matter around the left basal ganglia as strategic structures for global cognitive impairment after stroke. A strategic network involving several overlapping and domain-specific cortical and subcortical structures was identified for each of the cognitive domains. Future studies should aim to develop even more comprehensive infarct location-based models for post-stroke cognitive impairment through multicenter studies including thousands of patients.

116 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.
Abstract: Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.

8,730 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations