Journal•ISSN: 0278-0062

# IEEE Transactions on Medical Imaging

Institute of Electrical and Electronics Engineers

About: IEEE Transactions on Medical Imaging is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Iterative reconstruction & Computer science. It has an ISSN identifier of 0278-0062. Over the lifetime, 5911 publications have been published receiving 546257 citations. The journal is also known as: Institute of Electrical and Electronics Engineers transactions on medical imaging & Medical imaging.

Topics: Iterative reconstruction, Computer science, Image segmentation, Segmentation, Image processing

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: The authors propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations.

Abstract: The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limitation-no spatial information is taken into account. This causes the FM model to work only on well-defined images with low levels of noise; unfortunately, this is often not the the case due to artifacts such as partial volume effect and bias field distortion. Under these conditions, FM model-based methods produce unreliable results. Here, the authors propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown that the FM model is a degenerate version of the HMRF model. The advantage of the HMRF model derives from the way in which the spatial information is encoded through the mutual influences of neighboring sites. Although MRF modeling has been employed in MR image segmentation by other researchers, most reported methods are limited to using MRF as a general prior in an FM model-based approach. To fit the HMRF model, an EM algorithm is used. The authors show that by incorporating both the HMRF model and the EM algorithm into a HMRF-EM framework, an accurate and robust segmentation can be achieved. More importantly, the HMRF-EM framework can easily be combined with other techniques. As an example, the authors show how the bias field correction algorithm of Guillemaud and Brady (1997) can be incorporated into this framework to achieve a three-dimensional fully automated approach for brain MR image segmentation.

6,335 citations

••

TL;DR: The results clearly indicate that the proposed nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.

Abstract: In this paper the authors present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, the authors have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.

5,490 citations

••

TL;DR: The results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

Abstract: A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

4,773 citations

••

TL;DR: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present, and is applied at an early stage in an automated data analysis, before a tissue model is available.

Abstract: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present. The method has the advantage that it can be applied at an early stage in an automated data analysis, before a tissue model is available. Described as nonparametric nonuniform intensity normalization (N3), the method is independent of pulse sequence and insensitive to pathological data that might otherwise violate model assumptions. To eliminate the dependence of the field estimate on anatomy, an iterative approach is employed to estimate both the multiplicative bias field and the distribution of the true tissue intensities. The performance of this method is evaluated using both real and simulated MR data.

4,613 citations

••

TL;DR: In this paper, the authors proposed a more accurate general mathematical model for ET where an unknown emission density generates, and is to be reconstructed from, the number of counts n*(d) in each of D detector units d. Within the model, they gave an algorithm for determining an estimate? of? which maximizes the probability p(n*|?) of observing the actual detector count data n* over all possible densities?.

Abstract: Previous models for emission tomography (ET) do not distinguish the physics of ET from that of transmission tomography. We give a more accurate general mathematical model for ET where an unknown emission density ? = ?(x, y, z) generates, and is to be reconstructed from, the number of counts n*(d) in each of D detector units d. Within the model, we give an algorithm for determining an estimate ? of ? which maximizes the probability p(n*|?) of observing the actual detector count data n* over all possible densities ?. Let independent Poisson variables n(b) with unknown means ?(b), b = 1, ···, B represent the number of unobserved emissions in each of B boxes (pixels) partitioning an object containing an emitter. Suppose each emission in box b is detected in detector unit d with probability p(b, d), d = 1, ···, D with p(b, d) a one-step transition matrix, assumed known. We observe the total number n* = n*(d) of emissions in each detector unit d and want to estimate the unknown ? = ?(b), b = 1, ···, B. For each ?, the observed data n* has probability or likelihood p(n*|?). The EM algorithm of mathematical statistics starts with an initial estimate ?0 and gives the following simple iterative procedure for obtaining a new estimate ?new, from an old estimate ?old, to obtain ?k, k = 1, 2, ···, ?new(b)= ?old(b) ?Dd=1 n*(d)p(b,d)/??old(b?)p(b?,d),b=1,···B.

4,288 citations