scispace - formally typeset
Search or ask a question

Showing papers by "Ling Huang published in 2004"


Journal ArticleDOI
TL;DR: Experimental results show that Tapestry exhibits stable behavior and performance as an overlay, despite the instability of the underlying network layers, illustrating its utility as a deployment infrastructure.
Abstract: We present Tapestry, a peer-to-peer overlay routing infrastructure offering efficient, scalable, location-independent routing of messages directly to nearby copies of an object or service using only localized resources. Tapestry supports a generic decentralized object location and routing applications programming interface using a self-repairing, soft-state-based routing layer. The paper presents the Tapestry architecture, algorithms, and implementation. It explores the behavior of a Tapestry deployment on PlanetLab, a global testbed of approximately 100 machines. Experimental results show that Tapestry exhibits stable behavior and performance as an overlay, despite the instability of the underlying network layers. Several widely distributed applications have been implemented on Tapestry, illustrating its utility as a deployment infrastructure.

1,901 citations


Book ChapterDOI
26 Feb 2004
TL;DR: This paper presents a novel aggregation technique called type indirection that allows mobile crowds to roam as single mobile entities and shows that its performance approaches that of Mobile IP with optimizations while significantly reducing the effect of handoff storms.
Abstract: Economies of scale and advancements in wide-area wireless networking are leading to the availability of more small, networked mobile devices, placing higher stress on existing mobility infrastructures. This problem is exacerbated by the formation of mobile crowds that generate storms of location update traffic as they cross boundaries between base stations. In this paper, we present a novel aggregation technique we call type indirection that allows mobile crowds to roam as single mobile entities. We discuss our design in the context of Warp, a mobility infrastructure based on a peer-to-peer overlay, and show that its performance approaches that of Mobile IP with optimizations while significantly reducing the effect of handoff storms.

20 citations