scispace - formally typeset
Search or ask a question

Showing papers by "Lorenzo Pareschi published in 2022"


Proceedings ArticleDOI
30 Mar 2022
TL;DR: A multi-agent algorithm for multi- objective optimization problems, which extends the class of consensus-based optimization methods and relies on a scalar- ization strategy, and is described by a mean-field model, which is suitable for a theoretical analysis of the algorithm convergence.
Abstract: We present a multi-agent algorithm for multi-objective optimization problems, which extends the class of consensus-based optimization methods and relies on a scalarization strategy. The optimization is achieved by a set of interacting agents exploring the search space and attempting to solve all scalar sub-problems simultaneously. We show that those dynamics are described by a mean-field model, which is suitable for a theoretical analysis of the algorithm convergence. Numerical results show the validity of the proposed method.

6 citations


Journal ArticleDOI
07 Jan 2022-Entropy
TL;DR: In this paper , the authors evaluated the economic trend during the COVID-19 pandemic, resorting to a mathematical model joining a classical compartmental model including vaccinated individuals with a kinetic model of wealth distribution based on binary wealth exchanges.
Abstract: The spread of the COVID-19 pandemic has highlighted the close link between economics and health in the context of emergency management. A widespread vaccination campaign is considered the main tool to contain the economic consequences. This paper will focus, at the level of wealth distribution modeling, on the economic improvements induced by the vaccination campaign in terms of its effectiveness rate. The economic trend during the pandemic is evaluated, resorting to a mathematical model joining a classical compartmental model including vaccinated individuals with a kinetic model of wealth distribution based on binary wealth exchanges. The interplay between wealth exchanges and the progress of the infectious disease is realized by assuming, on the one hand, that individuals in different compartments act differently in the economic process and, on the other hand, that the epidemic affects risk in economic transactions. Using the mathematical tools of kinetic theory, it is possible to identify the equilibrium states of the system and the formation of inequalities due to the pandemic in the wealth distribution of the population. Numerical experiments highlight the importance of the vaccination campaign and its positive effects in reducing economic inequalities in the multi-agent society.

5 citations


Journal ArticleDOI
TL;DR: A new class of AP Neural Networks (APNNs) for multiscale hyperbolic transport models of epidemic spread that, thanks to an appropriate AP formulation of the loss function, is capable to work uniformly at the different scales of the system.
Abstract: When investigating epidemic dynamics through differential models, the parameters needed to understand the phenomenon and to simulate forecast scenarios require a delicate calibration phase, often made even more challenging by the scarcity and uncertainty of the observed data reported by official sources. In this context, Physics-Informed Neural Networks (PINNs), by embedding the knowledge of the differential model that governs the physical phenomenon in the learning process, can effectively address the inverse and forward problem of data-driven learning and solving the corresponding epidemic problem. In many circumstances, however, the spatial propagation of an infectious disease is characterized by movements of individuals at different scales governed by multiscale PDEs. This reflects the heterogeneity of a region or territory in relation to the dynamics within cities and in neighboring zones. In presence of multiple scales, a direct application of PINNs generally leads to poor results due to the multiscale nature of the differential model in the loss function of the neural network. To allow the neural network to operate uniformly with respect to the small scales, it is desirable that the neural network satis-fies an Asymptotic-Preservation (AP) property in the learning process. To this end, we consider a new class of AP Neural Networks (APNNs) for multiscale hyperbolic transport models of epidemic spread that, thanks to an appropriate AP formulation of the loss function, is capable to work uniformly at the different scales of the system. A series of numerical tests for different epidemic scenarios confirms the validity of the proposed approach, highlighting the importance of the AP property in the neural network when dealing with multiscale problems especially in presence of sparse and partially observed systems. methods, physics-informed neural networks, discrete-velocity transport models, multiscale hyperbolic models, epidemic compartmental models, diffusion limit

4 citations


Journal ArticleDOI
TL;DR: This work will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods that leads to highly accurate description of the uncertainty dependent large time behavior.
Abstract: Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant random component or with particles living in a random environment which characterization may be deduced through experimental data and leading consequently to uncertainty-dependent equilibrium states. In this work, to address the problem of effectively solving stochastic Fokker-Planck systems, we will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods. The resulting numerical method, contrarily to the direct application of a stochastic Galerkin projection in the parameter space of the unknowns of the underlying Fokker-Planck model, leads to highly accurate description of the uncertainty dependent large time behavior. Several numerical tests in the context of collective behavior for social and life sciences are presented to assess the validity of the present methodology against standard ones.

2 citations


Journal ArticleDOI
TL;DR: In this paper , a structure-preserving Discontinuous Galerkin (SPDG) operator is proposed to recover the algebraic property related to the divergence of the curl of a vector field, referred to as div-curl problem.

1 citations


Journal ArticleDOI
TL;DR: In this article , a new class of semi-Lagrangian (SL) schemes with implicit-explicit (IMEX) Runge-Kutta (RK) time stepping for PDEs involving multiple space-time scales is presented.
Abstract: Abstract This article is devoted to the construction of a new class of semi-Lagrangian (SL) schemes with implicit-explicit (IMEX) Runge-Kutta (RK) time stepping for PDEs involving multiple space-time scales. The semi-Lagrangian (SL) approach fully couples the space and time discretization, thus making the use of RK strategies particularly difficult to be combined with. First, a simple scalar advection-diffusion equation is considered as a prototype PDE for the development of a high order formulation of the semi-Lagrangian IMEX algorithms. The advection part of the PDE is discretized explicitly at the aid of a SL technique, while an implicit discretization is employed for the diffusion terms. In this way, an unconditionally stable numerical scheme is obtained, that does not suffer any CFL-type stability restriction on the maximum admissible time step. Second, the SL-IMEX approach is extended to deal with hyperbolic systems with multiple scales, including balance laws, that involve shock waves and other discontinuities. A conservative scheme is then crucial to properly capture the wave propagation speed and thus to locate the discontinuity and the plateau exhibited by the solution. A novel SL technique is proposed, which is based on the integration of the governing equations over the space-time control volume which arises from the motion of each grid point. High order of accuracy is ensured by the usage of IMEX RK schemes combined with a Cauchy–Kowalevskaya procedure that provides a predictor solution within each space-time element. The one-dimensional shallow water equations (SWE) are chosen to validate the new conservative SL-IMEX schemes, where convection and pressure fluxes are treated explicitly and implicitly, respectively. The asymptotic-preserving (AP) property of the novel schemes is also studied considering a relaxation PDE system for the SWE. A large suite of convergence studies for both the non-conservative and the conservative version of the novel class of methods demonstrates that the formal order of accuracy is achieved and numerical evidences about the conservation property are shown. The AP property for the corresponding relaxation system is also investigated.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a truncated-moment formalism was proposed to model the transport of neutrinos in some astrophysical scenarios such as core-collapse supernovae and binary neutron star mergers.
Abstract: Modeling correctly the transport of neutrinos is crucial in some astrophysical scenarios such as core-collapse supernovae and binary neutron star mergers. In this paper, we focus on the truncated-moment formalism, considering only the first two moments (M1 scheme) within the grey approximation, which reduces Boltzmann seven-dimensional equation to a system of 3+1 equations closely resembling the hydrodynamic ones. Solving the M1 scheme is still mathematically challenging, since it is necessary to model the radiation-matter interaction in regimes where the evolution equations become stiff and behave as an advection-diffusion problem. Here, we present different global, high-order time integration schemes based on Implicit-Explicit Runge-Kutta methods designed to overcome the time-step restriction caused by such behavior while allowing us to use the explicit Runge-Kutta commonly employed for the magneto-hydrodynamics and Einstein equations. Finally, we analyze their performance in several numerical tests.

Journal ArticleDOI
30 Nov 2022-Axioms
TL;DR: The Luria-Delbrück mutation model is a cornerstone of evolution theory and has been mathematically formulated in a number of ways, e.g., by means of classical statistical mechanics tools as discussed by the authors .
Abstract: The Luria–Delbrück mutation model is a cornerstone of evolution theory and has been mathematically formulated in a number of ways. In this paper, we illustrate how this model of mutation rates can be derived by means of classical statistical mechanics tools—in particular, by modeling the phenomenon resorting to methodologies borrowed from classical kinetic theory of rarefied gases. The aim is to construct a linear kinetic model that can reproduce the Luria–Delbrück distribution starting from the elementary interactions that qualitatively and quantitatively describe the variations in mutated cells. The kinetic description is easily adaptable to different situations and makes it possible to clearly identify the differences between the elementary variations, leading to the Luria–Delbrück, Lea–Coulson, and Kendall formulations, respectively. The kinetic approach additionally emphasizes basic principles which not only help to unify existing results but also allow for useful extensions.