scispace - formally typeset
Search or ask a question

Showing papers by "Lutz Schweikhard published in 2023"


DOI
03 Jun 2023
TL;DR: In this article , the excitation energy of the 1/2$^-$ isomer in indium was measured to be 671(37) keV and the mass uncertainty of the ground state was significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN.
Abstract: The excitation energy of the 1/2$^-$ isomer in $^{99}$In at ${N=50}$ is measured to be 671(37) keV and the mass uncertainty of the 9/2$^+$ ground state is significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The measurements exploit a major improvement in the resolution of the multi-reflection time-of-flight mass spectrometer. The results reveal an intriguing constancy of the $1/2^-$ isomer excitation energies in neutron-deficient indium that persists down to the $N = 50$ shell closure, even when all neutrons are removed from the valence shell. This trend is used to test large-scale shell model, \textit{ab initio}, and density functional theory calculations. The models have difficulties describing both the isomer excitation energies and ground-state electromagnetic moments along the indium chain.

1 citations


Journal ArticleDOI
TL;DR: In this paper , Cationic and anionic clusters of the 14 elements carbon, silicon, germanium, tin, and lead are produced by high-vacuum laser ablation and studied with a multi-reflection time-of-flight mass spectrometer.
Abstract: Abstract Cationic and anionic clusters of the group-14 elements carbon, silicon, germanium, tin, and lead are produced by high-vacuum laser ablation and studied with a multi-reflection time-of-flight mass spectrometer. In-trap photodissociation is performed for cluster species in the size range $$n =$$ n = 2–10. The clusters’ production rates as well as their dissociation pathways are used to probe the nonmetal–metal transition throughout the group. Carbon clusters show neutral-trimer break-off, while those of the other elements evaporate neutral monomers and, in some cases, form specific charged fragment sizes. Graphic abstract

Journal ArticleDOI
TL;DR: In this paper , the Isotope Separation On-Line method was employed at the CERN-ISOLDE facility to produce neptunium and plutonium from a uranium carbide target material using 1.4-GeV protons.
Abstract: Accelerator-based techniques are one of the leading ways to produce radioactive nuclei. In this work, the Isotope Separation On-Line method was employed at the CERN-ISOLDE facility to produce neptunium and plutonium from a uranium carbide target material using 1.4-GeV protons. Neptunium and plutonium were laser-ionized and extracted as 30-keV ion beams. A Multi-Reflection Time-of-Flight mass spectrometer was used for ion identification by means of time-of-flight measurements as well as for isobaric separation. Isotope shifts were investigated for the 395.6-nm ground state transition in $^{236,237,239}$Np and the 413.4-nm ground state transition in $^{236,239,240}$Pu. Rates of $^{235-241}$Np and $^{234-241}$Pu ions were measured and compared with predictions of in-target production mechanisms simulated with GEANT4 and FLUKA to elucidate the processes by which these nuclei, which contain more protons than the target nucleus, are formed. $^{241}$Pu is the heaviest nuclide produced and identified at a proton-accelerator-driven facility to date. We report the availability of neptunium and plutonium as two additional elements at CERN-ISOLDE and discuss the limit of accelerator-based isotope production at high-energy proton accelerator facilities for nuclides in the actinide region.


Journal ArticleDOI
TL;DR: In this paper , two methods of molecular beam production were studied: extraction of molecular ion beams from the ion source, and formation of molecular ions from the mass-separated ion beam in a gas-filled radio-frequency quadrupole ion trap.
Abstract: The use of radioactive molecules for fundamental physics research is a developing interdisciplinary field limited dominantly by their scarce availability. In this work, radioactive molecular ion beams containing actinide nuclei extracted from uranium carbide targets are produced via the Isotope Separation On-Line technique at the CERN-ISOLDE facility. Two methods of molecular beam production are studied: extraction of molecular ion beams from the ion source, and formation of molecular ions from the mass-separated ion beam in a gas-filled radio-frequency quadrupole ion trap. Ion currents of U$^+$, UO$_{1-3}^+$, UC$_{1-3}^+$, UF$_{1-4}^+$, UF$_{1,2}$O$_{1,2}^+$ are reported. Metastable tantalum and uranium fluoride molecular ions are identified. Formation of UO$_{1-3}^+$, U(OH)$_{1-3}^+$, UC$_{1-3}^+$, UF$_{1,2}$O$_{1,2}^+$ from mass-separated beams of U$^+$, UF$_{1,2}^+$ with residual gas is observed in the ion trap. The effect of trapping time on molecular formation is presented.