scispace - formally typeset
Search or ask a question

Showing papers by "Markus R. Wenk published in 2005"


Journal ArticleDOI
TL;DR: Novel analytical approaches — in particular, liquid chromatography and mass spectrometry — for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.
Abstract: The crucial role of lipids in cell, tissue and organ physiology is demonstrated by a large number of genetic studies and by many human diseases that involve the disruption of lipid metabolic enzymes and pathways. Examples of such diseases include cancer, diabetes, as well as neurodegenerative and infectious diseases. So far, the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids, which is largely due to the complexity of lipids and the lack of powerful tools for their analysis. Novel analytical approaches--in particular, liquid chromatography and mass spectrometry--for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.

1,123 citations


Journal ArticleDOI
TL;DR: The data provide the first evidence for a dual role of a Rab GTPase in regulating both generation and turnover of PIs via PI kinases and phosphatases to coordinate signaling functions with organelle homeostasis.
Abstract: Generation and turnover of phosphoinositides (PIs) must be coordinated in a spatial- and temporal-restricted manner. The small GTPase Rab5 interacts with two PI 3-kinases, Vps34 and PI3Kβ, suggesting that it regulates the production of 3-PIs at various stages of the early endocytic pathway. Here, we discovered that Rab5 also interacts directly with PI 5- and PI 4-phosphatases and stimulates their activity. Rab5 regulates the production of phosphatidylinositol 3-phosphate (PtdIns[3]P) through a dual mechanism, by directly phosphorylating phosphatidylinositol via Vps34 and by a hierarchical enzymatic cascade of phosphoinositide-3-kinaseβ (PI3Kβ), PI 5-, and PI 4-phosphatases. The functional importance of such an enzymatic pathway is demonstrated by the inhibition of transferrin uptake upon silencing of PI 4-phosphatase and studies in weeble mutant mice, where deficiency of PI 4-phosphatase causes an increase of PtdIns(3,4)P2 and a reduction in PtdIns(3)P. Activation of PI 3-kinase at the plasma membrane is accompanied by the recruitment of Rab5, PI 4-, and PI 5-phosphatases to the cell cortex. Our data provide the first evidence for a dual role of a Rab GTPase in regulating both generation and turnover of PIs via PI kinases and phosphatases to coordinate signaling functions with organelle homeostasis.

379 citations


Journal ArticleDOI
12 Nov 2005-Traffic
TL;DR: A vesicular transport system from host endolysosomes to the PV, and a requirement for PV membrane and parasite plasma membrane proteins in C delivery to T. gondii are supported.
Abstract: The intracellular protozoan Toxoplasma gondii is auxotrophic for low-density lipoprotein (LDL)-derived cholesterol (C). We previously showed that T. gondii scavenges this essential lipid from host endolysosomal compartments and that C delivery to the parasitophorous vacuole (PV) does not require transit through host Golgi or endoplasmic reticulum. In this study, we explore the itinerary of C from the host endolysosomes to the PV. Labeled C incorporated into LDL is rapidly detected in intravacuolar parasites and partially esterified by the parasites. In contrast to diverse mammalian organelles, the post-endolysosomal transfer of C to the PV does not involve the host plasma membrane as an intermediate. Nevertheless, the PV membrane is accessible to extracellular sterol acceptors, suggesting C trafficking from intracellular parasites to host plasma membrane. C movement to the PV requires temperatures permissive for vesicular transport, metabolic energy and functional microtubules. Host caveolae vesicles and the sterol carrier protein-2 do not participate in this process. Proteolytic treatment of purified PV or free parasites abolishes C acquisition by the parasites. Altogether, these results support a vesicular transport system from host endolysosomes to the PV, and a requirement for PV membrane and parasite plasma membrane proteins in C delivery to T. gondii.

51 citations



Journal ArticleDOI
TL;DR: A comparison study of six drug discovery studies over a 12-month period finds that three of them showed clear trends in the development of new drugs and the use of these drugs was associated with an up-and-down response in women.
Abstract: Nature Reviews Drug Discovery 4, 594–610 (2005) Figure 1 contained errors; a corrected version of this figure is now available online on the final page of the article PDF.

3 citations