scispace - formally typeset
Search or ask a question

Showing papers by "Mathias Basner published in 2012"


Journal ArticleDOI
TL;DR: This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source and the environment and suggested that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure.
Abstract: This paper summarizes the findings from the past 3 year's research on the effects of environmental noise on sleep and identifies key future research goals. The past 3 years have seen continued interest in both short term effects of noise on sleep (arousals, awakenings), as well as epidemiological studies focusing on long term health impacts of nocturnal noise exposure. This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source (air, road, and rail traffic, neighbors, church bells) and the environment (home, laboratory, hospital). New epidemiological studies support already existing evidence that night-time noise is likely associated with cardiovascular disease and stroke in the elderly. These studies collectively also suggest that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure. Relative to noise policy, new effect-oriented noise protection concepts, and rating methods based on limiting awakening reactions were introduced. The publications of WHO's ''Night Noise Guidelines for Europe'' and ''Burden of Disease from Environmental Noise'' both stress the importance of nocturnal noise exposure for health and well-being. However, studies demonstrating a causal pathway that directly link noise (at ecological levels) and disturbed sleep with cardiovascular disease and/or other long term health outcomes are still missing. These studies, as well as the quantification of the impact of emerging noise sources (e.g., high speed rail, wind turbines) have been identified as the most relevant issues that should be addressed in the field on the effects of noise on sleep in the near future.

132 citations


Journal ArticleDOI
TL;DR: Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of the study.

81 citations


Journal ArticleDOI
01 Feb 2012-Sleep
TL;DR: An adaptive-duration version of the PVT (PVT-A) that stops sampling once it has gathered enough information to correctly classify PVT performance is developed and validated, increasing the practicability of the test in operational and clinical settings.
Abstract: Study Objectives: The Psychomotor Vigilance Test (PVT) is a widely used assay of behavioral alertness sensitive to the effects of sleep loss and circadian misalignment. The standard 10-minute duration of the PVT is often considered impractical for operational or clinical environments. Therefore, we developed and validated an adaptive-duration version of the PVT (PVT-A) that stops sampling once it has gathered enough information to correctly classify PVT performance. Design: Repeated-measures experiments involving 10-minute PVT assessments every 2 hours across both acute total sleep deprivation (TSD) and 5 days of chronic partial sleep deprivation (PSD). Setting: Controlled laboratory environment. Participants: Seventy-four healthy subjects (34 women), aged 22 to 45 years. Interventions: A TSD experiment involving 33 hours awake (n = 31 subjects), and a PSD experiment involving 5 nights of 4 hours time in bed (n = 43 subjects). Measurements and Results: The PVT-A algorithm was trained with 527 TSD test bouts and validated with 880 PSD test bouts. Based on our primary outcome measure “number of lapses (response times ≥ 500 ms) plus false starts (premature responses or response times 5 and ≤ 16 lapses and false starts), or low (> 16 lapses and false starts). The decision threshold for PVT-A termination was set so that at least 95% of training data-set tests were classified correctly and no test was classified incorrectly across 2 performance categories (i.e., high as low or low as high), resulting in an average test duration of 6.0 minutes (SD 2.4 min). In the validation data set, 95.7% of test bouts were correctly classified, and there were no incorrect classifications across 2 categories. Agreement corrected for chance was excellent (κ = 0.92). Across the 3 performance categories, sensitivity averaged 93.7% (range 87.2%-100%), and specificity averaged 96.8% (range 91.6%-99.9%). Test duration averaged 6.4 minutes (SD 1.7 min), with a minimum of 27 seconds. Conclusions: We developed and validated a highly accurate, sensitive, and specific adaptive-duration version of the 10-minute PVT. Test duration of the adaptive PVT averaged less than 6.5 minutes, with 60 tests (4.3%) terminating after less than 2 minutes, increasing the practicability of the test in operational and clinical settings. The adaptive-duration strategy may be superior to a simple reduction of PVT duration in which the fixed test duration may be too short to identify subjects with moderate impairment (showing deficits only later during the test) but unnecessarily long for those who are either fully alert or severely impaired.

46 citations


Journal ArticleDOI
05 Dec 2012-JAMA
TL;DR: For internal medicine services at 2 hospitals, implementation of a protected sleep period while on call resulted in an increase in overnight sleep duration and improved alertness the next morning.
Abstract: Context A 2009 Institute of Medicine report recommended protected sleep periods for medicine trainees on extended overnight shifts, a position reinforced by new Accreditation Council for Graduate Medical Education requirements. Objective To evaluate the feasibility and consequences of protected sleep periods during extended duty. Design, Setting, and Participants Randomized controlled trial conducted at the Philadelphia VA Medical Center medical service and Oncology Unit of the Hospital of the University of Pennsylvania (2009-2010). Of the 106 interns and senior medical students who consented, 3 were not scheduled on any study rotations. Among the others, 44 worked at the VA center, 16 at the university hospital, and 43 at both. Intervention Twelve 4-week blocks were randomly assigned to either a standard intern schedule (extended duty overnight shifts of up to 30 hours; equivalent to 1200 overnight intern shifts at each site), or a protected sleep period (protected time from 12:30 AM to 5:30 AM with handover of work cell phone; equivalent to 1200 overnight intern shifts at each site). Participants were asked to wear wrist actigraphs and complete sleep diaries. Main Outcome Measures Primary outcome was hours slept during the protected period on extended duty overnight shifts. Secondary outcome measures included hours slept during a 24-hour period (noon to noon) by day of call cycle and Karolinska sleepiness scale. Results For 98.3% of on-call nights, cell phones were signed out as designed. At the VA center, participants with protected sleep had a mean 2.86 hours (95% CI, 2.57-3.10 hours) of sleep vs 1.98 hours (95% CI, 1.68-2.28 hours) among those who did not have protected hours of sleep (P Conclusions For internal medicine services at 2 hospitals, implementation of a protected sleep period while on call resulted in an increase in overnight sleep duration and improved alertness the next morning. Trial Registration clinicaltrials.gov Identifier: NCT00874510.

37 citations



Journal ArticleDOI
TL;DR: Annoyance ratings increased significantly with the total number of trains and freight trains per night, and non-significantly with rising number of passenger trains and energy equivalent sound pressure level, but no other aspects of subjective sleep disturbances were examined.
Abstract: Railway noise interferes with daytime activities and disturbs sleep leading to annoyance of exposed residents. The main objective of this paper was to establish exposure-response relationships between nocturnal railway noise exposure and annoyance and to examine self-reported sleep disturbances as short-term reactions to noise. In a field study 33 residents living close to railway tracks in the Cologne/Bonn area (Germany) were investigated. Railway noise was measured indoors during nine consecutive nights at each site. Questionnaires referring to annoyance and non-acoustical factors were performed. Annoyance ratings increased significantly with the total number of trains and freight trains per night, and non-significantly with rising number of passenger trains and energy equivalent sound pressure level (L(Aeq)), when adjusting the model for non-acoustical variables. The total number of trains and the number of freight trains also significantly affected self-reported awakening frequency, but no other aspects of subjective sleep disturbances. The responses of this subject sample referring to railway noise in the previous night point to rather low impairments of exposed residents.

29 citations


Journal ArticleDOI
TL;DR: A detailed description of the sleep process, typical indicators of disturbed sleep, and how noise interferes with sleep is provided, and arguments supporting the joint use of actigraphy and a single channel electrocardiogram as meaningful, robust, and inexpensive methods that would allow for the investigation of large representative subject samples are presented.
Abstract: Various sleep measurement techniques have been applied in past studies on the effects of environmental noise on sleep, complicating comparisons between studies and the derivation of pooled exposure-response relationships that could inform policy and legislation. To date, a consensus on a standard measurement technique for the assessment of environmental noise effects on sleep is missing. This would be desirable to increase comparability of future studies. This manuscript provides a detailed description of the sleep process, typical indicators of disturbed sleep, and how noise interferes with sleep. It also describes and discusses merits and drawbacks of five established methods commonly used for the assessment of noise effects on sleep (i.e., polysomnography, actigraphy, electrocardiography, behaviorally confirmed awakenings, and questionnaires). Arguments supporting the joint use of actigraphy and a single channel electrocardiogram as meaningful, robust, and inexpensive methods that would allow for the investigation of large representative subject samples are presented. These could be used as a starting point for the generation of an expert consensus.

23 citations