scispace - formally typeset
Search or ask a question

Showing papers by "Matthew J. Page published in 2014"


Journal ArticleDOI
TL;DR: Whether preoperative education in people undergoing total hip replacement or total knee replacement improves postoperative outcomes with respect to pain, function, health-related quality of life, anxiety, length of hospital stay and the incidence of adverse events is investigated.
Abstract: Background Hip or knee replacement is a major surgical procedure that can be physically and psychologically stressful for patients. It is hypothesised that education before surgery reduces anxiety and enhances clinically important postoperative outcomes. Objectives To determine whether preoperative education in people undergoing total hip replacement or total knee replacement improves postoperative outcomes with respect to pain, function, health-related quality of life, anxiety, length of hospital stay and the incidence of adverse events (e.g. deep vein thrombosis). Search methods We searched the Cochrane Central Register of Controlled Trials (2013, Issue 5), MEDLINE (1966 to May 2013), EMBASE (1980 to May 2013), CINAHL (1982 to May 2013), PsycINFO (1872 to May 2013) and PEDro to July 2010. We handsearched the Australian Journal of Physiotherapy (1954 to 2009) and reviewed the reference lists of included trials and other relevant reviews. Selection criteria Randomised or quasi-randomised trials of preoperative education (verbal, written or audiovisual) delivered by a health professional within six weeks of surgery to people undergoing hip or knee replacement compared with usual care. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We analysed dichotomous outcomes using risk ratios. We combined continuous outcomes using mean differences (MD) or standardised mean differences (SMD) with 95% confidence intervals (CI). Where possible, we pooled data using a random-effects meta-analysis. Main results We included 18 trials (1463 participants) in the review. Thirteen trials involved people undergoing hip replacement, three involved people undergoing knee replacement and two included both people with hip and knee replacements. Only six trials reported using an adequate method of allocation concealment, and only two trials blinded participants. Few trials reported sufficient data to analyse the major outcomes of the review (pain, function, health-related quality of life, global assessment, postoperative anxiety, total adverse events and re-operation rate). There did not appear to be an effect of time on any outcome, so we chose to include only the latest time point available per outcome in the review. In people undergoing hip replacement, preoperative education may not offer additional benefits over usual care. The mean postoperative anxiety score at six weeks with usual care was 32.16 on a 60-point scale (lower score represents less anxiety) and was 2.28 points lower with preoperative education (95% confidence interval (CI) -5.68 to 1.12; 3 RCTs, 264 participants, low-quality evidence), an absolute risk difference of -4% (95% CI -10% to 2%). The mean pain score up to three months postoperatively with usual care was 3.1 on a 10-point scale (lower score represents less pain) and was 0.34 points lower with preoperative education (95% CI -0.94 to 0.26; 3 RCTs, 227 participants; low-quality evidence), an absolute risk difference of -3% (95% CI -9% to 3%). The mean function score at 3 to 24 months postoperatively with usual care was 18.4 on a 68-point scale (lower score represents better function) and was 4.84 points lower with preoperative education (95% CI -10.23 to 0.66; 4 RCTs, 177 participants; low-quality evidence), an absolute risk difference of -7% (95% CI -15% to 1%). The number of people reporting adverse events, such as infection and deep vein thrombosis, did not differ between groups, but the effect estimates are uncertain due to very low quality evidence (23% (17/75) reported events with usual care versus 18% (14/75) with preoperative education; risk ratio (RR) 0.79; 95% CI 0.19 to 3.21; 2 RCTs, 150 participants). Health-related quality of life, global assessment of treatment success and re-operation rates were not reported. In people undergoing knee replacement, preoperative education may not offer additional benefits over usual care. The mean pain score at 12 months postoperatively with usual care was 80 on a 100-point scale (lower score represents less pain) and was 2 points lower with preoperative education (95% CI -3.45 to 7.45; 1 RCT, 109 participants), an absolute risk difference of -2% (95% CI -4% to 8%). The mean function score at 12 months postoperatively with usual care was 77 on a 100-point scale (lower score represents better function) and was no different with preoperative education (0; 95% CI -5.63 to 5.63; 1 RCT, 109 participants), an absolute risk difference of 0% (95% CI -6% to 6%). The mean health-related quality of life score at 12 months postoperatively with usual care was 41 on a 100-point scale (lower score represents worse quality of life) and was 3 points lower with preoperative education (95% CI -6.38 to 0.38; 1 RCT, 109 participants), an absolute risk difference of -3% (95% CI -6% to 1%). The number of people reporting adverse events, such as infection and deep vein thrombosis, did not differ between groups (18% (11/60) reported events with usual care versus 13% (7/55) with preoperative education; RR 0.69; 95% CI 0.29 to 1.66; 1 RCT, 115 participants), an absolute risk difference of -6% (-19% to 8%). Global assessment of treatment success, postoperative anxiety and re-operation rates were not reported. Authors' conclusions Although preoperative education is embedded in the consent process, we are unsure if it offers benefits over usual care in terms of reducing anxiety, or in surgical outcomes, such as pain, function and adverse events. Preoperative education may represent a useful adjunct, with low risk of undesirable effects, particularly in certain patients, for example people with depression, anxiety or unrealistic expectations, who may respond well to preoperative education that is stratified according to their physical, psychological and social need.

434 citations


Journal ArticleDOI
TL;DR: The characteristics and synthesise the results of empirical studies that have investigated the prevalence and factors associated with selective inclusion or reporting in systematic reviews of randomised controlled trials (RCTs) of healthcare interventions are summarized.
Abstract: Background Systematic reviews may be compromised by selective inclusion and reporting of outcomes and analyses. Selective inclusion occurs when there are multiple effect estimates in a trial report that could be included in a particular meta-analysis (e.g. from multiple measurement scales and time points) and the choice of effect estimate to include in the meta-analysis is based on the results (e.g. statistical significance, magnitude or direction of effect). Selective reporting occurs when the reporting of a subset of outcomes and analyses in the systematic review is based on the results (e.g. a protocol-defined outcome is omitted from the published systematic review). Objectives To summarise the characteristics and synthesise the results of empirical studies that have investigated the prevalence of selective inclusion or reporting in systematic reviews of randomised controlled trials (RCTs), investigated the factors (e.g. statistical significance or direction of effect) associated with the prevalence and quantified the bias. Search methods We searched the Cochrane Methodology Register (to July 2012), Ovid MEDLINE, Ovid EMBASE, Ovid PsycINFO and ISI Web of Science (each up to May 2013), and the US Agency for Healthcare Research and Quality (AHRQ) Effective Healthcare Program's Scientific Resource Center (SRC) Methods Library (to June 2013). We also searched the abstract books of the 2011 and 2012 Cochrane Colloquia and the article alerts for methodological work in research synthesis published from 2009 to 2011 and compiled in Research Synthesis Methods. Selection criteria We included both published and unpublished empirical studies that investigated the prevalence and factors associated with selective inclusion or reporting, or both, in systematic reviews of RCTs of healthcare interventions. We included empirical studies assessing any type of selective inclusion or reporting, such as investigations of how frequently RCT outcome data is selectively included in systematic reviews based on the results, outcomes and analyses are discrepant between protocol and published review or non-significant outcomes are partially reported in the full text or summary within systematic reviews. Data collection and analysis Two review authors independently selected empirical studies for inclusion, extracted the data and performed a risk of bias assessment. A third review author resolved any disagreements about inclusion or exclusion of empirical studies, data extraction and risk of bias. We contacted authors of included studies for additional unpublished data. Primary outcomes included overall prevalence of selective inclusion or reporting, association between selective inclusion or reporting and the statistical significance of the effect estimate, and association between selective inclusion or reporting and the direction of the effect estimate. We combined prevalence estimates and risk ratios (RRs) using a random-effects meta-analysis model. Main results Seven studies met the inclusion criteria. No studies had investigated selective inclusion of results in systematic reviews, or discrepancies in outcomes and analyses between systematic review registry entries and published systematic reviews. Based on a meta-analysis of four studies (including 485 Cochrane Reviews), 38% (95% confidence interval (CI) 23% to 54%) of systematic reviews added, omitted, upgraded or downgraded at least one outcome between the protocol and published systematic review. The association between statistical significance and discrepant outcome reporting between protocol and published systematic review was uncertain. The meta-analytic estimate suggested an increased risk of adding or upgrading (i.e. changing a secondary outcome to primary) when the outcome was statistically significant, although the 95% CI included no association and a decreased risk as plausible estimates (RR 1.43, 95% CI 0.71 to 2.85; two studies, n = 552 meta-analyses). Also, the meta-analytic estimate suggested an increased risk of downgrading (i.e. changing a primary outcome to secondary) when the outcome was statistically significant, although the 95% CI included no association and a decreased risk as plausible estimates (RR 1.26, 95% CI 0.60 to 2.62; two studies, n = 484 meta-analyses). None of the included studies had investigated whether the association between statistical significance and adding, upgrading or downgrading of outcomes was modified by the type of comparison, direction of effect or type of outcome; or whether there is an association between direction of the effect estimate and discrepant outcome reporting.Several secondary outcomes were reported in the included studies. Two studies found that reasons for discrepant outcome reporting were infrequently reported in published systematic reviews (6% in one study and 22% in the other). One study (including 62 Cochrane Reviews) found that 32% (95% CI 21% to 45%) of systematic reviews did not report all primary outcomes in the abstract. Another study (including 64 Cochrane and 118 non-Cochrane reviews) found that statistically significant primary outcomes were more likely to be completely reported in the systematic review abstract than non-significant primary outcomes (RR 2.66, 95% CI 1.81 to 3.90). None of the studies included systematic reviews published after 2009 when reporting standards for systematic reviews (Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, and Methodological Expectations of Cochrane Intervention Reviews (MECIR)) were disseminated, so the results might not be generalisable to more recent systematic reviews. Authors' conclusions Discrepant outcome reporting between the protocol and published systematic review is fairly common, although the association between statistical significance and discrepant outcome reporting is uncertain. Complete reporting of outcomes in systematic review abstracts is associated with statistical significance of the results for those outcomes. Systematic review outcomes and analysis plans should be specified prior to seeing the results of included studies to minimise post-hoc decisions that may be based on the observed results. Modifications that occur once the review has commenced, along with their justification, should be clearly reported. Effect estimates and CIs should be reported for all systematic review outcomes regardless of the results. The lack of research on selective inclusion of results in systematic reviews needs to be addressed and studies that avoid the methodological weaknesses of existing research are also needed.

209 citations


Journal ArticleDOI
TL;DR: Evidence of moderate quality shows that a combination of manual therapy and exercise for six weeks probably results in less improvement at seven weeks but a similar number of adverse events compared with glucocorticoid injection, and the few outcome differences between interventions that were clinically important were detected only up to seven weeks.
Abstract: Background Adhesive capsulitis (also termed frozen shoulder) is commonly treated by manual therapy and exercise, usually delivered together as components of a physical therapy intervention. This review is one of a series of reviews that form an update of the Cochrane review, 'Physiotherapy interventions for shoulder pain.' Objectives To synthesise available evidence regarding the benefits and harms of manual therapy and exercise, alone or in combination, for the treatment of patients with adhesive capsulitis. Search methods We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL Plus, ClinicalTrials.gov and the WHO ICTRP clinical trials registries up to May 2013, unrestricted by language, and reviewed the reference lists of review articles and retrieved trials, to identify potentially relevant trials. Selection criteria We included randomised controlled trials (RCTs) and quasi-randomised trials, including adults with adhesive capsulitis, and comparing any manual therapy or exercise intervention versus placebo, no intervention, a different type of manual therapy or exercise or any other intervention. Interventions included mobilisation, manipulation and supervised or home exercise, delivered alone or in combination. Trials investigating the primary or adjunct effect of a combination of manual therapy and exercise were the main comparisons of interest. Main outcomes of interest were participant-reported pain relief of 30% or greater, overall pain (mean or mean change), function, global assessment of treatment success, active shoulder abduction, quality of life and the number of participants experiencing adverse events. Data collection and analysis Two review authors independently selected trials for inclusion, extracted the data, performed a risk of bias assessment and assessed the quality of the body of evidence for the main outcomes using the GRADE approach. Main results We included 32 trials (1836 participants). No trial compared a combination of manual therapy and exercise versus placebo or no intervention. Seven trials compared a combination of manual therapy and exercise versus other interventions but were clinically heterogeneous, so opportunities for meta-analysis were limited. The overall impression gained from these trials is that the few outcome differences between interventions that were clinically important were detected only up to seven weeks. Evidence of moderate quality shows that a combination of manual therapy and exercise for six weeks probably results in less improvement at seven weeks but a similar number of adverse events compared with glucocorticoid injection. The mean change in pain with glucocorticoid injection was 58 points on a 100-point scale, and 32 points with manual therapy and exercise (mean difference (MD) 26 points, 95% confidence interval (CI) 15 points to 37 points; one RCT, 107 participants), for an absolute difference of 26% (15% to 37%). Mean change in function with glucocorticoid injection was 39 points on a 100-point scale, and 14 points with manual therapy and exercise (MD 25 points, 95% CI 35 points to 15 points; one RCT, 107 participants), for an absolute difference of 25% (15% to 35%). Forty-six per cent (26/56) of participants reported treatment success with manual therapy and exercise compared with 77% (40/52) of participants receiving glucocorticoid injection (risk ratio (RR) 0.6, 95% CI 0.44 to 0.83; one RCT, 108 participants), with an absolute risk difference of 30% (13% to 48%). The number reporting adverse events did not differ between groups: 56% (32/57) reported events with manual therapy and exercise, and 53% (30/57) with glucocorticoid injection (RR 1.07, 95% CI 0.76 to 1.49; one RCT, 114 participants), with an absolute risk difference of 4% (-15% to 22%). Group differences in improvement in overall pain and function at six months and 12 months were not clinically important. We are uncertain of the effect of other combinations of manual therapy and exercise, as most evidence is of low quality. Meta-analysis of two trials (86 participants) suggested no clinically important differences between a combination of manual therapy, exercise, and electrotherapy for four weeks and placebo injection compared with glucocorticoid injection alone or placebo injection alone in terms of overall pain, function, active range of motion and quality of life at six weeks, six months and 12 months (though the 95% CI suggested function may be better with glucocorticoid injection at six weeks). The same two trials found that adding a combination of manual therapy, exercise and electrotherapy for four weeks to glucocorticoid injection did not confer clinically important benefits over glucocorticoid injection alone at each time point. Based on one high quality trial (148 participants), following arthrographic joint distension with glucocorticoid and saline, a combination of manual therapy and supervised exercise for six weeks conferred similar effects to those of sham ultrasound in terms of overall pain, function and quality of life at six weeks and at six months, but provided greater patient-reported treatment success and active shoulder abduction at six weeks. One trial (119 participants) found that a combination of manual therapy, exercise, electrotherapy and oral non-steroidal anti-inflammatory drug (NSAID) for three weeks did not confer clinically important benefits over oral NSAID alone in terms of function and patient-reported treatment success at three weeks. On the basis of 25 clinically heterogeneous trials, we are uncertain of the effect of manual therapy or exercise when not delivered together, or one type of manual therapy or exercise versus another, as most reported differences between groups were not clinically or statistically significant, and the evidence is mostly of low quality. Authors' conclusions The best available data show that a combination of manual therapy and exercise may not be as effective as glucocorticoid injection in the short-term. It is unclear whether a combination of manual therapy, exercise and electrotherapy is an effective adjunct to glucocorticoid injection or oral NSAID. Following arthrographic joint distension with glucocorticoid and saline, manual therapy and exercise may confer effects similar to those of sham ultrasound in terms of overall pain, function and quality of life, but may provide greater patient-reported treatment success and active range of motion. High-quality RCTs are needed to establish the benefits and harms of manual therapy and exercise interventions that reflect actual practice, compared with placebo, no intervention and active interventions with evidence of benefit (e.g. glucocorticoid injection).

168 citations


Journal ArticleDOI
TL;DR: The main outcomes of interest were participant-reported pain relief of 30% or greater, overall pain, function, global assessment of treatment success, active shoulder abduction, quality of life, and the number of participants experiencing any adverse event.
Abstract: Background Adhesive capsulitis (also termed frozen shoulder) is a common condition characterised by spontaneous onset of pain, progressive restriction of movement of the shoulder and disability that restricts activities of daily living, work and leisure. Electrotherapy modalities, which aim to reduce pain and improve function via an increase in energy (electrical, sound, light, thermal) into the body, are often delivered as components of a physical therapy intervention. This review is one in a series of reviews which form an update of the Cochrane review 'Physiotherapy interventions for shoulder pain'. Objectives To synthesise the available evidence regarding the benefits and harms of electrotherapy modalities, delivered alone or in combination with other interventions, for the treatment of adhesive capsulitis. Search methods We searched CENTRAL, MEDLINE, EMBASE, CINAHL Plus and the ClinicalTrials.gov and World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) clinical trials registries up to May 2014, unrestricted by language, and reviewed the reference lists of review articles and retrieved trials to identify any other potentially relevant trials. Selection criteria We included randomised controlled trials (RCTs) and controlled clinical trials using a quasi-randomised method of allocation that included adults with adhesive capsulitis and compared any electrotherapy modality to placebo, no treatment, a different electrotherapy modality, or any other intervention. The two main questions of the review focused on whether electrotherapy modalities are effective compared to placebo or no treatment, or if they are an effective adjunct to manual therapy or exercise (or both). The main outcomes of interest were participant-reported pain relief of 30% or greater, overall pain, function, global assessment of treatment success, active shoulder abduction, quality of life, and the number of participants experiencing any adverse event. Data collection and analysis Two review authors independently selected trials for inclusion, extracted the data, performed a risk of bias assessment, and assessed the quality of the body of evidence for the main outcomes using the GRADE approach. Main results Nineteen trials (1249 participants) were included in the review. Four trials reported using an adequate method of allocation concealment and six trials blinded participants and personnel. Only two electrotherapy modalities (low-level laser therapy (LLLT) and pulsed electromagnetic field therapy (PEMF)) have been compared to placebo. No trial has compared an electrotherapy modality plus manual therapy and exercise to manual therapy and exercise alone. The two main questions of the review were investigated in nine trials. Low quality evidence from one trial (40 participants) indicated that LLLT for six days may result in improvement at six days. Eighty per cent (16/20) of participants reported treatment success with LLLT compared with 10% (2/20) of participants receiving placebo (risk ratio (RR) 8.00, 95% confidence interval (CI) 2.11 to 30.34; absolute risk difference 70%, 95% CI 48% to 92%). No participants in either group reported adverse events. We were uncertain whether PEMF for two weeks improved pain or function more than placebo at two weeks because of the very low quality evidence from one trial (32 participants). Seventy-five per cent (15/20) of participants reported pain relief of 30% or more with PEMF compared with 0% (0/12) of participants receiving placebo (RR 19.19, 95% CI 1.25 to 294.21; absolute risk difference 75%, 95% CI 53% to 97%). Fifty-five per cent (11/20) of participants reported total recovery of joint function with PEMF compared with 0% (0/12) of participants receiving placebo (RR 14.24, 95% CI 0.91 to 221.75; absolute risk difference 55%, 95% CI 31 to 79). Moderate quality evidence from one trial (63 participants) indicated that LLLT plus exercise for eight weeks probably results in greater improvement when measured at the fourth week of treatment, but a similar number of adverse events, compared with placebo plus exercise. The mean pain score at four weeks was 51 points with placebo plus exercise, while with LLLT plus exercise the mean pain score was 32 points on a 100 point scale (mean difference (MD) 19 points, 95% CI 15 to 23; absolute risk difference 19%, 95% CI 15% to 23%). The mean function impairment score was 48 points with placebo plus exercise, while with LLLT plus exercise the mean function impairment score was 36 points on a 100 point scale (MD 12 points, 95% CI 6 to 18; absolute risk difference 12%, 95% CI 6 to 18). Mean active abduction was 70 degrees with placebo plus exercise, while with LLLT plus exercise mean active abduction was 79 degrees (MD 9 degrees, 95% CI 2 to 16; absolute risk difference 5%, 95% CI 1% to 9%). No participants in either group reported adverse events. LLLT's benefits on function were maintained at four months. Based on very low quality evidence from six trials, we were uncertain whether therapeutic ultrasound, PEMF, continuous short wave diathermy, Iodex phonophoresis, a combination of Iodex iontophoresis with continuous short wave diathermy, or a combination of therapeutic ultrasound with transcutaneous electrical nerve stimulation (TENS) were effective adjuncts to exercise. Based on low or very low quality evidence from 12 trials, we were uncertain whether a diverse range of electrotherapy modalities (delivered alone or in combination with manual therapy, exercise, or other active interventions) were more or less effective than other active interventions (for example glucocorticoid injection). Authors' conclusions Based upon low quality evidence from one trial, LLLT for six days may be more effective than placebo in terms of global treatment success at six days. Based upon moderate quality evidence from one trial, LLLT plus exercise for eight weeks may be more effective than exercise alone in terms of pain up to four weeks, and function up to four months. It is unclear whether PEMF is more or less effective than placebo, or whether other electrotherapy modalities are an effective adjunct to exercise. Further high quality randomised controlled trials are needed to establish the benefits and harms of physical therapy interventions (that comprise electrotherapy modalities, manual therapy and exercise, and are reflective of clinical practice) compared to interventions with evidence of benefit (for example glucocorticoid injection or arthrographic joint distension).

104 citations