scispace - formally typeset
Search or ask a question

Showing papers by "Michael F. Whiting published in 2012"


Journal ArticleDOI
15 Dec 2012-Gene
TL;DR: Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117-200% more variable than the markers which have been used previously in calliphorids.

145 citations


Journal ArticleDOI
TL;DR: The first odonate opsin sequences are published using a degenerate PCR approach for both dragonfly and damselfly lineages as well as a transcriptome approach for a single species ofdamselfly, and first insights into the evolution and distribution of the visual pigments (opsins) among odonates are presented.

49 citations


Journal ArticleDOI
TL;DR: A phylogenetic analysis of the order Embioptera is presented with a revised classification based on results of the analysis, suggesting that each of these taxa is a relatively plesiomorphic representatative of the orders order.
Abstract: A phylogenetic analysis of the order Embioptera is presented with a revised classification based on results of the analysis. Eighty-two species of Embioptera are included from all families except Paedembiidae Ross and Embonychidae Navas. Monophyly of each of the eight remaining currently recognized families is tested except Andesembiidae Ross, for which only a single species was included. Nine outgroup taxa are included from Blattaria, Grylloblattaria, Mantodea, Mantophasmatodea, Orthoptera, Phasmida and Plecoptera. Ninety-six morphological characters were analysed along with DNA sequence data from the five genes 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase I and histone III. Data were analysed in combined analyses of all data using parsimony and Bayesian optimality criteria, and combined molecular data were analysed using maximum likelihood. Several major conclusions about Embioptera relationships and classification are based on interpretation of these analyses. Of eight families for which monophyly was tested, four were found to be monophyletic under each optimality criterion: Clothodidae Davis, Anisembiidae Davis, Oligotomidae Enderlein and Teratembiidae Krauss. Australembiidae Ross was not recovered as monophyletic in the likelihood analysis in which one Australembia Ross species was recovered in a position distant from other australembiids. This analysis included only molecular data and the topology was not strongly supported. Given this, and because parsimony and the Bayesian analyses recovered a strongly supported clade including all Australembiidae, we regard this family also as monophyletic. Three other families – Notoligotomidae Davis, Archembiidae Ross and Embiidae Burmeister, as historically delimited – were not found to be monophyletic under any optimality criterion. Notoligotomidae is restricted here to include only the genus Notoligotoma Davis with a new family, Ptilocerembiidae Miller and Edgerly, new family, erected to include the genus Ptilocerembia Friederichs. Archembiidae is restricted here to include only the genera Archembia Ross and Calamoclostes Enderlein. The family group name Scelembiidae Ross is resurrected from synonymy with Archembiidae (new status) to include all other genera recently placed in Archembiidae. Embiidae is not demonstrably monophyletic with species currently placed in the family resolved in three separate clades under each optimality criterion. Because taxon sampling is not extensive within this family in this analysis, no changes are made to Embiidae classification. Relationships between families delimited herein are not strongly supported under any optimality criterion with a few exceptions. Either Clothodidae Davis (parsimony) or Australembiidae Ross (Bayesian) is the sister to the remaining Embioptera taxa. The Bayesian analysis includes Australembiidae as the sister to all other Embioptera except Clothididae, suggesting that each of these taxa is a relatively plesiomorphic representatative of the order. Oligotomidae and Teratembiidae are sister groups, and Archembiidae (sensu novum), Ptilocerembiidae, Andesembiidae and Anisembiidae form a monophyletic group under each optimality criterion. Each family is discussed in reference to this analysis, diagnostic combinations and taxon compositions are provided, and a key to families of Embioptera is included.

36 citations


Journal ArticleDOI
TL;DR: Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae)
Abstract: Ingley, S.J., Bybee, S.M., Tennessen, K.J., Whiting, M.F. & Branham, M.A. (2012). Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). —Zoologica Scripta, 41, 637–650. Helicopter damselflies (Odonata: Pseudostigmatidae) form a relatively small, yet highly specialized group of odonates, including the largest extant odonate (wingspan of ∼190 mm). Pseudostigmatids are found throughout Central and South America, with the exception of one species that is found exclusively in East Africa. Pseudostigmatids oviposit exclusively in phytotelmata and forage on orb-weaver spiders, which they pluck from webs. Pseudostigmatids also exhibit unique forms of both broad and narrow wings. Although the ecology of these behaviours and morphological features have been studied, their phylogenetic origins and evolutionary history are unknown. Here, we examine the origins of pseudostigmatid wing forms, oviposition in phytotelmata and spider feeding within a modern phylogenetic context, testing for single origins of each character. Phylogenetic analyses are based on 59 morphological characters and ∼5 kb of sequence data. Our findings include a well-supported monophyletic Pseudostigmatidae and Coryphagrion grandis as sister to the Neotropical genera. The genus Mecistogaster is paraphyletic, with Pseudostigma nested within the clade. The genus Microstigma is supported as monophyletic and forms a sister group relationship to the clade of Megaloprepus and Anomisma. The sister group relationship to Pseudostigmatidae is less clear. On the basis of this phylogenetic analysis, we propose three new tribes (Coryphagrionini, Microstigmatini and Mecistogastrini). As Pseudostigmatidae is monophyletic, the behaviour of gleaning spiders from webs appears to derive from a single origin. There are two origins of broad wings within Pseudostigmatidae. Oviposition in phytotelmata most certainly evolved multiple times within Coenagrionoidea. These findings provide new insights into pseudostigmatid evolution that can be used to generate hypotheses regarding behaviour and morphological adaptation in this unique and threatened group of damselflies.

26 citations


Journal ArticleDOI
06 Apr 2012-Zootaxa
TL;DR: Zorotypus novobritannicus n.
Abstract: Zorotypus novobritannicus n. sp. (Polyneoptera: Zoraptera: Zorotypidae) is described from the Australasian ecozone frommales and females of both apterous and dealated morphs. The description includes detailed accounts of head and thoraxof the eyeless apterous morphs, head of the dealated winged morph with both eyes and ocelli, and the male and femaleabdomen and terminalia. Zorotypus novobritannicus n. sp. has unique, palmate setae on the lateral and ventral sides of thecerci of both sexes and dealated winged morphs are found at much higher densities than have been reported for any other species of Zoraptera.

10 citations


Journal ArticleDOI
TL;DR: The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions that can then be searched in a methodical way to determine the overall optimal phylogenetic solution.
Abstract: Background: Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results: When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/ psoda Conclusions: The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution.

2 citations