scispace - formally typeset
Search or ask a question

Showing papers by "Michele Navarra published in 2013"


Journal ArticleDOI
TL;DR: This work formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells, and the results warrant further investigation of BEOliposomes for in vivo applications.

130 citations


Journal ArticleDOI
TL;DR: Clinical studies on the effects of products containing herbal preparations based on Passiflora incarnata reveal crucial weaknesses such as poor details regarding the drug extract ratio, limited patient samples, no description of blinding and randomisation procedures, incorrect definition of placebo, and lack of intention to treat analysis.

108 citations


Journal ArticleDOI
TL;DR: The present study demonstrates that the protective effect of PEA on SCI-associated neuroinflammation could be improved by co-ultramicronization with Lut possibly due to its antioxidant properties.
Abstract: It has recently been demonstrated that palmitoylethanolamide (PEA), an endogenous lipid amide belonging to the N-acylethanolamine family, exerts neuroprotection in central nervous system (CNS) pathologies. In recent studies, we have demonstrated that treatment with PEA significantly reduced inflammatory secondary events associated with spinal cord injury (SCI). Since oxidative stress is considered to play an important role in neuroinflammatory disorders, in the present work we studied a new composite, a formulation including PEA and the antioxidant compound luteolin (Lut), subjected to an ultramicronization process, co-ultraPEALut. We investigated the effect of co-ultraPEALut (in the respective fixed doses of 10:1 in mass) in both an ex vivo organotypic spinal cord culture model and an in vivo model of SCI. For the organotypic cultures, spinal cords were prepared from mice at postnatal day 6 and were cut into transverse slices of 400 μm thickness to generate the lumbar organotypic slice cultures. After 7 days of culturing, the slices were mechanically injured onto the center of the slice and the co-ultraPEALut was applied at different concentrations (0.00009, 0.0009 and 0.009 g/l) 1 hour before damage. For in vivo studies, SCI was induced in mice through spinal cord compression by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy, and co-ultraPEALut (1 mg/kg ip) was administered at 1 and 6 hours after SCI. At 24 hours after SCI, mice were sacrificed and the spinal cords were collected for further evaluation. Additional animals were treated similarly and sacrificed 10 days after SCI. Pretreatment with co-ultraPEALut significantly reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner, restored neuronal nitric oxide synthase (nNOS) expression at all three tested concentrations, and protected cells by cell death (MTT assay) in spinal cord organotypic cultures. Moreover, we demonstrated in vivo that co-ultraPEALut 1 mg/kg reduced the severity of trauma induced by compression and improved the motor activity evaluated at 10 days post-injury. The present study demonstrates that the protective effect of PEA on SCI-associated neuroinflammation could be improved by co-ultramicronization with Lut possibly due to its antioxidant properties.

67 citations


Journal ArticleDOI
16 Apr 2013-PLOS ONE
TL;DR: It is shown that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ.
Abstract: Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment.

58 citations


Journal ArticleDOI
TL;DR: The main objective is to catalyze interest of academic and companies' researchers on crucial aspects to be taken into account in the research for the development of botanical products.
Abstract: Botanical products sold in the health area are generally intended as drugs, medicinal products, food supplements or substances for therapeutic use. Use of botanicals for improving or to care human health has evolved independently in different countries worldwide. Regulatory issues regarding botanical products designed for the food supplements or medicinal market and their influence on research and development are discussed. European Union (EU) and United States (US) policies regulating these products are focused with comments on the legislations delivered during the last ten years and differences existing in rules between these countries are emphasized. Research and development on botanical products nowdays strongly influenced by the product destination in the market. Addressed and differentiated research for either food supplements or medicinal markets is necessary to purchase data really useful for assessment of safe and effective use for both the categories. The main objective is to catalyze interest of academic and companies' researchers on crucial aspects to be taken into account in the research for the development of botanical products.

25 citations


Journal ArticleDOI
TL;DR: NIS expression in testicular tumors with the more aggressive behavior is of interest for the potential use of targeting NIS to deliver radioiodine in malignant cells.
Abstract: Testicular cancer is the most frequent cancer in young men. The large majority of patients have a good prognosis, but in a small group of tumors, the current treatments are not effective. Radioiodine is routinely used in the treatment of thyroid cancer and is currently investigated as a potential therapeutic tool even for extra-thyroid tumors able to concentrate this radioisotope. Expression of Na(+)/I(-) symporter (NIS (SLC5A5)), the glycoprotein responsible for iodide transport, has been demonstrated in normal testicular tissue. In this study, we analyzed NIS expression in a large series of testicular carcinomas. Our retrospective series included 107 patients operated for testicular tumors: 98 typical seminomas, six embryonal carcinomas, one mixed embryonal choriocarcinoma, and two Leydig cells tumors. Expression and regulation of NIS mRNA and protein levels were also investigated in human embryonal testicular carcinoma cells (NTERA) by real-time RT-PCR and western blotting respectively. Immunohistochemical analysis showed the presence of NIS in the large majority of seminomas (90/98) and embryonal carcinomas (5/7) of the testis but not in Leydig cell carcinomas. Expression of NIS protein was significantly associated with lymphovascular invasion. In NTERA cells treated with the histone deacetylase inhibitors SAHA and valproic acid, a significant increase in NIS mRNA (about 60- and 30-fold vs control, P<0.001 and P<0.01 respectively) and protein levels, resulting in enhanced ability to uptake radioiodine, was observed. Finally, NIS expression in testicular tumors with the more aggressive behavior is of interest for the potential use of targeting NIS to deliver radioiodine in malignant cells.

9 citations