scispace - formally typeset
Search or ask a question
Author

Michiel Bacchiani

Other affiliations: IBM, Boston University, AT&T Labs
Bio: Michiel Bacchiani is an academic researcher from Google. The author has contributed to research in topics: Acoustic model & Word error rate. The author has an hindex of 34, co-authored 86 publications receiving 3970 citations. Previous affiliations of Michiel Bacchiani include IBM & Boston University.


Papers
More filters
Proceedings ArticleDOI
15 Apr 2018
TL;DR: In this article, the authors explore a variety of structural and optimization improvements to the Listen, Attend, and Spell (LAS) encoder-decoder architecture, which significantly improves performance.
Abstract: Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We also introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12, 500 hour voice search task, we find that the proposed changes improve the WER from 9.2% to 5.6%, while the best conventional system achieves 6.7%; on a dictation task our model achieves a WER of 4.1% compared to 5% for the conventional system.

885 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: The structure and application of an acoustic room simulator to generate large-scale simulated data for training deep neural networks for far-field speech recognition and performance is evaluated using a factored complex Fast Fourier Transform (CFFT) acoustic model introduced in earlier work.
Abstract: We describe the structure and application of an acoustic room simulator to generate large-scale simulated data for training deep neural networks for far-field speech recognition. The system simulates millions of different room dimensions, a wide distribution of reverberation time and signal-to-noise ratios, and a range of microphone and sound source locations. We start with a relatively clean training set as the source and artificially create simulated data by randomly sampling a noise configuration for every new training example. As a result, the acoustic model is trained using examples that are virtually never repeated. We evaluate performance of this approach based on room simulation using a factored complex Fast Fourier Transform (CFFT) acoustic model introduced in our earlier work, which uses CFFT layers and LSTM AMs for joint multichannel processing and acoustic modeling. Results show that the simulator-driven approach is quite effective in obtaining large improvements not only in simulated test conditions, but also in real / rerecorded conditions. This room simulation system has been employed in training acoustic models including the ones for the recently released Google Home.

263 citations

Journal ArticleDOI
TL;DR: This paper introduces a neural network architecture, which performs multichannel filtering in the first layer of the network, and shows that this network learns to be robust to varying target speaker direction of arrival, performing as well as a model that is given oracle knowledge of the true target Speaker direction.
Abstract: Multichannel automatic speech recognition (ASR) systems commonly separate speech enhancement, including localization, beamforming, and postfiltering, from acoustic modeling. In this paper, we perform multichannel enhancement jointly with acoustic modeling in a deep neural network framework. Inspired by beamforming, which leverages differences in the fine time structure of the signal at different microphones to filter energy arriving from different directions, we explore modeling the raw time-domain waveform directly. We introduce a neural network architecture, which performs multichannel filtering in the first layer of the network, and show that this network learns to be robust to varying target speaker direction of arrival, performing as well as a model that is given oracle knowledge of the true target speaker direction. Next, we show how performance can be improved by factoring the first layer to separate the multichannel spatial filtering operation from a single channel filterbank which computes a frequency decomposition. We also introduce an adaptive variant, which updates the spatial filter coefficients at each time frame based on the previous inputs. Finally, we demonstrate that these approaches can be implemented more efficiently in the frequency domain. Overall, we find that such multichannel neural networks give a relative word error rate improvement of more than 5% compared to a traditional beamforming-based multichannel ASR system and more than 10% compared to a single channel waveform model.

221 citations

Posted Content
TL;DR: This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the Framework.
Abstract: Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.

213 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: The technical and system building advances made to the Google Home multichannel speech recognition system, which was launched in November 2016, result in a reduction of WER of 8-28% relative to the current production system.
Abstract: This paper describes the technical and system building advances made to the Google Home multichannel speech recognition system, which was launched in November 2016. Technical advances include an adaptive dereverberation frontend, the use of neural network models that do multichannel processing jointly with acoustic modeling, and Grid-LSTMs to model frequency variations. On the system level, improvements include adapting the model using Google Home specific data. We present results on a variety of multichannel sets. The combination of technical and system advances result in a reduction of WER of 8-28% relative compared to the current production system.

184 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
18 Apr 2019
TL;DR: This work presents SpecAugment, a simple data augmentation method for speech recognition that is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients) and achieves state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work.
Abstract: We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER.

2,758 citations

Proceedings ArticleDOI
22 Jul 2006
TL;DR: This work introduces structural correspondence learning to automatically induce correspondences among features from different domains in order to adapt existing models from a resource-rich source domain to aresource-poor target domain.
Abstract: Discriminative learning methods are widely used in natural language processing. These methods work best when their training and test data are drawn from the same distribution. For many NLP tasks, however, we are confronted with new domains in which labeled data is scarce or non-existent. In such cases, we seek to adapt existing models from a resource-rich source domain to a resource-poor target domain. We introduce structural correspondence learning to automatically induce correspondences among features from different domains. We test our technique on part of speech tagging and show performance gains for varying amounts of source and target training data, as well as improvements in target domain parsing accuracy using our improved tagger.

1,672 citations

Proceedings ArticleDOI
08 Sep 2015
TL;DR: This paper takes advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture, and finds that the CLDNN provides a 4-6% relative improvement in WER over an LSTM, the strongest of the three individual models.
Abstract: Both Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) have shown improvements over Deep Neural Networks (DNNs) across a wide variety of speech recognition tasks. CNNs, LSTMs and DNNs are complementary in their modeling capabilities, as CNNs are good at reducing frequency variations, LSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space. In this paper, we take advantage of the complementarity of CNNs, LSTMs and DNNs by combining them into one unified architecture. We explore the proposed architecture, which we call CLDNN, on a variety of large vocabulary tasks, varying from 200 to 2,000 hours. We find that the CLDNN provides a 4–6% relative improvement in WER over an LSTM, the strongest of the three individual models.

1,434 citations

Proceedings ArticleDOI
24 Aug 2002
TL;DR: A hierarchical classifier is learned that is guided by a layered semantic hierarchy of answer types, and eventually classifies questions into fine-grained classes.
Abstract: In order to respond correctly to a free form factual question given a large collection of texts, one needs to understand the question to a level that allows determining some of the constraints the question imposes on a possible answer. These constraints may include a semantic classification of the sought after answer and may even suggest using different strategies when looking for and verifying a candidate answer.This paper presents a machine learning approach to question classification. We learn a hierarchical classifier that is guided by a layered semantic hierarchy of answer types, and eventually classifies questions into fine-grained classes. We show accurate results on a large collection of free-form questions used in TREC 10.

1,345 citations