scispace - formally typeset
Search or ask a question

Showing papers by "Min Wu published in 2014"


Journal ArticleDOI
TL;DR: Based on phenotypic, genotypic and phylogenetic characteristics, strain CMB17(T) is proposed to represent a novel species, denominated Paracoccus sediminis sp.
Abstract: Strain CMB17T was a short rod-shaped bacterium isolated from marine sediment of the Pacific Ocean. Cells were Gram-stain-negative and non-motile. Optimal growth occurred at 25–30 °C, pH 6.5–7 and 0.5–1 % (w/v) NaCl. The major fatty acid was C18 : 1ω7c (87.59 %), and ubiquinone-10 was detected as the only isoprenoid quinone. The DNA G+C content of the genomic DNA was 62.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CMB17T is most closely related to Paracoccus stylophorae KTW-16T (96.7 %), P. solventivorans DSM 6637T (96.4 %) and P. saliphilus YIM 90738T (96.4 %). Based on phenotypic, genotypic and phylogenetic characteristics, strain CMB17T is proposed to represent a novel species, denominated Paracoccus sediminis sp. nov. (type strain CMB17T = JCM 18467T = DSM 26170T = CGMCC 1.12681T).

35 citations


Journal ArticleDOI
TL;DR: It is suggested that strain NH131(T), isolated from deep-sea sediment of South China Sea, represents a novel species of the genus Devosia for which the name DevosIA pacifica sp.
Abstract: A novel bacterial strain, NH131(T), was isolated from deep-sea sediment of South China Sea. Cells were strictly aerobic, Gram-stain negative, short rod-shaped and motile with a single lateral flagellum. Strain NH131(T) grew optimally at pH 6.5-7.0 and 25-30 °C. 16S rRNA gene sequence analysis revealed that strain NH131(T) belonged to the genus Devosia, sharing the highest sequence similarity with the type strain, Devosia geojensis BD-c194(T) (96.2%). The predominant fatty acids were C(18 : 1)ω7c, 11-methyl C(18 : 1)ω7c, C(18 : 0) and C(16 : 0). Ubiquinone 10 was the predominant ubiquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid, three glycolipids and two unknown lipids. The DNA G+C content of strain NH131(T) was 63.0 mol%. On the basis of the results of polyphasic identification, it is suggested that strain NH131(T) represents a novel species of the genus Devosia for which the name Devosia pacifica sp. nov. is proposed. The type strain is NH131(T) ( = JCM 19305(T) = KCTC 32437(T)).

26 citations


Journal ArticleDOI
Jin-Jin Liu1, Xin-Qi Zhang1, Fangtao Chi1, Jie Pan1, Cong Sun1, Min Wu1 
TL;DR: On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17(T) is considered to represent a novel species of the genus Gemmobacteria, for which the name Gemmobacter megaterium sp.
Abstract: A Gram-stain-negative, non-motile and aerobic bacterium, designated CF17T, was isolated from coastal planktonic seaweeds, East China Sea. The isolate grew at 18–37 °C (optimum 25–28 °C), pH 6.5–9.0 (optimum 7.0–8.0) and with 0–5 % NaCl (optimum 1–2 %, w/v) and 0.5–10 % sea salts (optimum 2–3 %, w/v). Growth of strain CF17T could be stimulated prominently by supplementing the growth medium with the autoclaved supernatant of a culture of strain CF5, which was isolated from the same sample along with strain CF17T. The cell morphology of strain CF17T was a bean-shaped rod consisting of a swollen end and a long prostheca. The phylogenetic analysis of 16S rRNA gene sequences indicated that strain CF17T clustered with Gemmobacter nectariphilus DSM 15620T within the genus Gemmobacter . The DNA G+C content of strain CF17T was 61.4 mol%. The respiratory quinone was ubiquinone Q-10. The major fatty acids included C18 : 1ω7c and C18 : 0. The polar lipids of strain CF17T consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized phospholipids, one uncharacterized aminolipid, three uncharacterized glycolipids and one uncharacterized lipid. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17T ( = CGMCC 1.11024T = JCM 18498T) is considered to represent a novel species of the genus Gemmobacter , for which the name Gemmobacter megaterium sp. nov. is proposed.

23 citations


Journal ArticleDOI
Cong Sun1, Yu-jie Chen1, Xin-Qi Zhang, Jie Pan1, Hong Cheng1, Min Wu1 
TL;DR: The results suggest that strain HZ11 has the potential ability to produce bioethanol from alginate with moderate genetic modification, which may significantly increase the yield of bioeth ethanol from brown seaweed and the utilization rate of brown seaweeds.

21 citations


Journal ArticleDOI
TL;DR: Phylogenetic analysis indicated that only Clusters I and III NifH were present, consistent with the phylogenetic analysis of the microbial 16S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.
Abstract: A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction (PCR) amplification of the 16S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E (MBGE) and marine group I (MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilonproteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III NifH were present. This is consistent with the phylogenetic analysis of the microbial 16S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.

13 citations


Journal ArticleDOI
Jie Pan1, Ailiman Abulaizi1, Cong Sun1, Hong Cheng1, Min Wu1 
TL;DR: The draft genome sequence of H. sp.

1 citations