scispace - formally typeset
Search or ask a question
Author

Moghtada Mobedi

Bio: Moghtada Mobedi is an academic researcher from Shizuoka University. The author has contributed to research in topics: Heat transfer & Porous medium. The author has an hindex of 21, co-authored 67 publications receiving 1626 citations. Previous affiliations of Moghtada Mobedi include Middle East Technical University & İzmir Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of ad-orbent beds are described.
Abstract: Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent–adsorbate pairs and design of adsorbent beds. The adsorbent–adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorption heat pumps are classified and researches to overcome the difficulties are discussed.

339 citations

Journal ArticleDOI
TL;DR: In this article, the entropy generation in rectangular cavities with the same area but different aspect ratios is numerically investigated and the variation of the total entropy generation and average Bejan number for the whole cavity volume at different aspects ratios for different values of the Rayleigh number and irreversibility distribution ratio are also evaluated.

291 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of a Latent Heat Thermal Energy Storage system (LHTES) with and without aluminum foam is analyzed in a two-dimensional domain, where the enthalpy-porosity method is used to describe the PCM melting.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used heatline visualization technique to understand heat transport path in an inclined non-uniformly heated enclosure filled with water-based CuO nanofluid.

88 citations

Journal ArticleDOI
TL;DR: In this paper, the applicability of the KCE for the periodic porous media is investigated and the effects of porosity and pore to throat size ratio on Kozeny constant are studied and the continuity and Navier-Stokes equations are solved to determine the velocity and pressure fields in the voids between the rods.
Abstract: Kozeny-Carman permeability equation is an important relation for the determination of permeability in porous media. In this study, the permeabilities of porous media that contains rectangular rods are determined, numerically. The applicability of Kozeny-Carman equation for the periodic porous media is investigated and the effects of porosity and pore to throat size ratio on Kozeny constant are studied. The continuity and Navier-Stokes equations are solved to determine the velocity and pressure fields in the voids between the rods. Based on the obtained flow field, the permeability values for different porosities from 0.2 to 0.9 and pore to throat size ratio values from 1.63 to 7.46 are computed. Then Kozeny constants for different porous media with various porosity and pore to throat size ratios are obtained and a relationship between Kozeny constant, porosity and pore to throat size ratio is constructed. The study reveals that the pore to throat size ratio is an important geometrical parameter th...

87 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature.
Abstract: Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal–organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), −802, −805, −806, −808, −812, and −841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 s...

1,776 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art in this field of research, materials used in these systems and technological difficulties that researchers are set against are presented, and an emphasis is put on recent demonstrative projects including absorption and adsorption for long-term solar energy storage.
Abstract: In the past decade, long-term sorption and thermochemical heat storage has generated lot of interest. This paper presents the state of the art in this field of research, materials used in these systems and technological difficulties that researchers are set against. An emphasis is put on recent demonstrative projects including absorption and adsorption for long-term solar energy storage. It emerges that considerable breakthrough have been made. Even though there is no mature long-term sorption or thermochemical energy storage yet, primarily due to the high cost of materials, the suitability of this technology to long-term storage remains its main power of attracting.

497 citations