scispace - formally typeset
M

Myungshik Kim

Researcher at Imperial College London

Publications -  269
Citations -  14499

Myungshik Kim is an academic researcher from Imperial College London. The author has contributed to research in topics: Quantum entanglement & Quantum. The author has an hindex of 62, co-authored 266 publications receiving 12231 citations. Previous affiliations of Myungshik Kim include Korea Institute for Advanced Study & Sogang University.

Papers
More filters
Journal ArticleDOI

Quantum Plasmonics

TL;DR: A review of recent progress in the experimental and theoretical investigation of surface plasmons, their role in controlling light-matter interactions at the quantum level and potential applications can be found in this article.
Journal ArticleDOI

Spin Entanglement Witness for Quantum Gravity

TL;DR: It is shown that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay.
Journal ArticleDOI

Probing Planck-scale physics with quantum optics

TL;DR: In this article, a quantum optical control and readout of a quantum oscillator with a mass close to the Planck mass is used to explore possible deviations from the quantum commutation relation.
Journal ArticleDOI

Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement

TL;DR: In this paper, it was shown that nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the field modes with the help of a beam splitter.
Journal ArticleDOI

Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field

TL;DR: This work experimentally implemented simple alternated sequences of photon creation and annihilation on a thermal field and used quantum tomography to verify the peculiar character of the resulting light states, representing a step toward the full quantum control of a field.